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A simplified method for predicting rotor blade airloads
Wang Shicun and Xu Zhi (Nanjing Aeronautical Institute)

At present, a simplified method to predict the alrloads of rotor
blades 1s urgently needed for engineering applications. In this paper,
on the basls of classical generalized vortex theory of the rotor,
through the simplification process of the contribution of the circula-
tions to the 1nduced velocitles, the second order distribution of tbé
induced velocities of the rotor 1s obtained. Then, based on the blade

element theory, a closed form of equations for circulation 1s established.

By taking the flapping condition into account, simplified formulae for
predicting rotor blade airloads are obtained. In particular, in the
expressions of flapping coefficients, the variation of the induced
velocity 1is taken into consideration by directly relating to blade
parameters and flight parameters. Finally, the example given indicated
that these equations are suitable for aerodynamic analysis and prelim-
inary design of helicopters.

SYMBOLS

Q-=-rotor rotation velocity
R-=-rotor radius
v-=induced velocity
t=y/QR-~-dimensionless ¥
[-<-circulation
T=I/QR*-~-dimensionless T
(r, ¢) or (p, 6)--polar coordinate on the plane of the rotor blade
r = r/R--dimensionless r
p = p/R--dimensionless p
pH--density of air
k--number of blade

¥
This paper was presented at the 7th European Rotor Flight Vehilcle and

Power Lift Flight Vehicle Conference in September 1981. Recd. Nov. 1981.
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Vo-—forward veloclty of the rotor
Vv = VO/QR--dimensionless v,

o
V,=-=-combined air flow velocity, a constant with
respect to the blade plane

Vl = Vl/QR--dimensionless \'j

1

1
ao--attack angle of rotor with respect to Vo

al--attack angle of rotor with respect to V1
b--~ arclength of the blade

b = b/R--dimensionless b
cy--lift coefficient in the cross-section of the blade
a_--slope of two dimensional 1lift curve
T,--pulling force of a blade

T = le—-pulling force of the rotor

t.--installation angle of the blade cross section

d—--installation angle of the cross section of the
blade root

Ad--twlst of the blade

d,--cosine term of the periodic variation of blade
displacement

9,--sine term of the periodlc variation of blade
displacement

U--relative flow velocity of the blade cross section
T = U/QR--dimensionless U
Ux--velocity component of U 1n the plane of blades

U ==velocity component of U in the direction
perpendicular to the blades
u oV qpswo/QR--advance ratio
Ao = Vo sina /QR--flowing-in ratio

o
K--flapping adjustment coefficient

Be--flapping angle with respect to the horizontal hinge

B--flapping angle with respect to the rotation center
ao--coning angle
an--cosine term of blade flapping
bn--sine term of blade flapping
e--outward displacement of the horizontal hinge
e = e/R--dimensionless e
m, --mass of the blade

‘‘‘‘‘‘‘‘‘
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m,=m /PyR'—-~dimensionless my
C,-T/—%—p,,aR’Q‘R’-—coefficien’c of pulling force

J _—--moment of 1lnertia of a blade around the horizon-
tal hinge

S --moment of mass of a blade around the horizontal
hinge

(MA)e--torque of pulling force of a blade around the
horizontal hinge

(MG) --gravity torque of blade pulling force around hor-
izontal hinge

g--gravitational acceleration .

x—-1nteg§agﬁg gfggegoefficient of the root and the

I. INTRODUCTION

The estimation of airloads of rotor blades in the flapping plane
is one of the basic toplecs 1n the aerodynamics and helicopter aero-
dynamics. This 1s because: the flight quality, pilot control quallty
of the belicopter and the fatigue life of the rotor and the destabiliza-
tion of the aerodynamic elasticity are entirely determined by the air-
loads of the rotor. It 1s particularly important with regard to its
strain load.

Since the -1960's, scholars in all the countries have made signi-
ficant progress 1in this area through hard work. AGARD held a meeting
on "Methods for Estimation of Hellcopter Rotor Loads" in Italy in 1973
(1] and demonstrated the various analytical methods adopted by various
manufacturers. However, just as what 1s described in some comments and
papers published later {2,3], due to the complexity of the working con-
dition of the rotor, even with a high speed large scale numerical com-
puter, no significant progress has been made in recent years. Therefore,
it 1is more attractive to develop a simplified method to estimate rotor
airloads for use by design engineers.

This paper began with the generalized vortex theory of the rotor
to obtain the relations between first two orders of harmonic wave of
the induced velocity and the lower and same order harmonic of the cir-
culations. Then, based on the blade element theory, a closed form
equation for circulations are established. Finally, by taking flapping
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conditions into account, the simplified equation for the estimation

- Loe i
ataan

of the ailrload of the rotor 1s derived.
) 1
ITI. INDUCED VELOCITIES .i
2
Based on the generalized vortex theory of rotor with fixed vortex %J
[4], the induced velocity at any point on the plane of the blades "
(F, y) is a function of the adhered circulation * (p, 8): =
T=T(F) (2-1) 8
= 3
If the circulation T 1s expanded into a Fourler serles: "

T=Fe(3)+ )] (Fue(F)cosml+Fu, (7)sinmg) (2-2)
N ms}
Then, the induced velocitiles ¥V can also be written as a Fourier series: ;;
T =8,(F) + ) (Fo (F)cosmt+ 5., (F)sinmb) (2-3) -
as]

Here the different harmonic wave components of the induced velocity
in general are caused by the varlous orders of harmonic components of
the circulations. In this paper, for simplification, only the major
contributing lower order and same order terms of the circulations are

considered with regard to induced velocities, 1i.e.

5,08 ]
0,0 =0}, + 9]¢
0, =0, +9{; (2-4)
0, =03, + 03¢ + 53¢ + 03¢

Oy, "’gl + °§: +93; + A

where the superscripts represent the order of harmonic of the circula-~
tions.

According to Wang Shicun's vortex theory 1 by limiting to second
order harmonics, we get (the downward induced velocity 1s positive) [5]:
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-
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7 &L p(3
(7 -% = o F(
1d[-'u
r dp

1df, _1 3 1 ?’)- —eY (=7 )
Y+ s 2F(2’ 'f’z’_t‘?"dp]+(1 (=T | (2-5)
where the super-geometric function 1s defined as:
- L8):(b)e_
F(a’ b’ d’z)—1+h§ (d).k! Z'
where |z]| < 1
' (8)r=a(a+1)(6+2)(68+k—1)
E d*-lp _2. hadd . -.'.
i and the symbol c¢ is !q
o 1 —lsina;| X o
¢ cosa,; 144ﬁnad‘:l ]
' The above expressions for the harmonic components of the induced ial
velocities are the key to the solution in this paper. The super-geo- 7
metric function used, based on [8], can take only the first few terms. RS
o
; III. CIRCULATION EQUATION o
' T
Based on the blade element theory and the famous Zukovskl equation,
the airload of the rotor blade can be expressed as [6]:
A
5 }
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ﬂ-p, Up--.%-.-.p,,U’bc, (3-1)

dr
h'! Here we adopted the regular assumption that:
Uw~U,

cwa,(ﬂ.—%:—)

h Therefore, the circulation equation (dimensionless) is: '1
_ (3-2) "

R S TR I .
ooy L LI - .
FRYOUY YN PP S, - al o

% o T= _;_’GQS(TJ-.‘. -ﬁy)
g For hinge type rotors, we assumed that the blades are rigid, its
L flapping adjustment coefficlent 1s K and the outward displacement 1is e. ’ .J
i‘ For hingeless rotors, it can be assumed that the blades are elastic and

1t 1s treated as equlvalent quantities. Thus

. -o.+rA6+0,eoub +8,sin $ — KB. _
- =T+ psind g
4 dB, "
= U,=—A+5+ poos$ B+ (F~e)go* (3-3) 4
E:::' and :
o B 1 .
= B=T =1 m“ﬂ?f"‘“""*”"s‘“'“] (3-4)
; If the following quantities are introduced:
5 A=A+ 83 : W
: a:-al_ﬂ: b:=b,+ﬂ:

- - \’”G +K__é‘_.

ﬂ‘-ﬂ, +K 1 1 ) 1—¢e

and neglect the smaller terms contalning 1—35 and higher than second
order flapping coefficients, such as a3, b3..., we get

By m—L-au{ 837+A07 =5, +A3+ -kt

2 2

FTT.' - 1 - - '3 1 —l-

Fiom—g—0eb| = F1e—Ha,+ biF +——Ha, + ——1Kb,

:.-:; t

E ﬁ,--—%—-a.i MU +AUF—9,,~alF — ; uKa=+—;—-!lb;]

L Purm o d (3-6)
fu’.' , deb| = 0.+ -;—,ubg'—ZGg;“‘Kb!;]

.




It 1s worthwhile noting that und=r the simplified method des-
cribed above (that 1s, only considering the indunced velocities caused
by lower order and same order terms of circulations), the derived rela- ,q
tion between induced velocities and circulation has a closed form. ]

By solving (2-5) and (3-6) simultaneously, the various orders of _~ﬂ
harmonics of the induced velocity can be obtained:

By —4—[&'?+M?*+r 1 ua:]

1+43 2
oA 1 1 -, Loz, e 3'1°'='1"
AG,, = 1+A° [(A' 2 ua:)( : 3 73 +ﬂ( 5 r+ + 10

s la a-,)
+A"( '7'+7']

3= 1:-1 A,,[ﬂ'P+AﬂU-r—a‘?— uKay+ —— ubz]+1—+1ATAv..
A% "1‘%/3_"7‘ [ss+a0r+ (a4 nat)]
Oy = 1+A [ u-a:+Ka=?+zb,'r'] 1+A"A .o
Aa”ﬂ-ﬁ:['—;’* e 'E -:] 1f.4 {1:[" K;‘“'—;—““:) ;.' -.}.
5T 110 F= "7_-’)""' TR g Fa"é"”,) i {
L G ”) (3-7) :',_:,
SIS W B Y :
A;,ﬁ;! u( :+-;~—ua: ( +ln')] ®
Lubg—~20,7 + Kb ]+ - .IA;: AB,,
(et 4
+ Pt F‘)-{-Aﬂ( T ?‘)] -.1
B
7 o
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: -2 o 2 - 1,4}
+Aﬂ( - L7 ”‘T")]"'“z_b‘f

AY 1, o\ A% /cos &, (_ﬂ.. 1 _ 1 3 ;‘>
+1+j4ﬁ [(A:-t- 5 ra:) Y 10

A3, /cos @ 1 1 -
+ﬂ‘.’(1- 11/+A8’)"( L+ r*)

1 +A43 16 8 4
1 .3 ., __1 )] (3-7) .
+":(' % 8 4
where A, A%, Al ...are defined as follows:

og.":i A
A 2 41y,

2 2
2sin a Vo g0 &
Aje= ST;;T;I‘ A= 4T Toing,
2 4 2sin’a a_ g0 45N, :
A=A eyt A Qrsina?
2c08 & 0 40
=‘=A81_+_sﬁ<—zl.- Ay, = AL,
o o go 225D, A3, = AL, -
3¢ o 1+sin a, v
2¢0s &, sina 1. ,1e '
§:=A3 (1+-slina-,):- Au L3¢
__2cosQy [y

=AM sma) -

We must explain here that 1in the deviation of induced velocity by
integration, if infinity appears, then it 1s necessary to replace the
- lower limit by r"o instead of 0. f'o is the relative radius of the blade
P root at which the wing cross section begins to show.

Since the circulation T can be expanded into a Fouriler series,
the airloads can also be written in the form of a Fourler series:

i G (), 3 () e () o) 0 -4

From equations (2-2), (3-1) and (3-3), we get
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dCr, 2 (= -__1 = '1-)
(d; )“ ST(rg.f 2 'l‘ru"" 2 lll'u

(F). =+

- = ) S
P+ Wb )

(3-9)
Therefore, the relations between the various harmonics of the

alrload of the blade and the various harmonics of the circulation are
established.

As for the straln coefficient of the entire rotor, it is easy to

find out: . .
T dCﬂ - dCr, -
Crm hJ-;‘(T;-.). dr-ka“(-E;* \ dr (3-10)
where Fo is the relative radius of the blade root at which the wing

cross section begins to take shape; Fl is the loss factor of the blade
tip if 1t 1s necessary to be considered.

IV. FLAPPING CONDITION

Because flapping coefficients are included in the expressions of

circulations and induced velocitles, it 1s necessary to study the flapp-
ing motion.

For hinge type rotors, according to [6], the flapping motion of
the blades 1s described by the following equation:

éd:fp"-" +8.Q'(Jo+eS,) = (M)~ (M),

(4=1)
where
f.-j:(r-c)'dm, moment of lnertia of a single blade
around the horizontal hinge
S.-_ff(r—c)dm, moment of mass of a single blade around

the horizontal hinge
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j
N ]
N 4
L 4
s 1
o (M‘)"j,: (r~¢)dT, gtrain torque of a single blade around J
the horizontal hinge P
(Me)o=gS. gravity torque of a single blade around A
the horizontal hinge _
Written in a dimensionless form: ]
3,
d\%?ci’a-‘—"i.-(A—la).—(Mc). -
It can be further written as - 1
%Hﬂ%’i-ﬁ‘-ﬁe (4=2) '
where -
Jo=J,/mR* J=3./(1-0)*
TP AP
VeIt =t o3
—s'--S-/M;R S=5./(1—¢)
(ﬁl)la (L!.I)c/"'|$7"Rg M= (A—ld)-/(l "Z)
(ﬁc)-- (MG)O/MIQ’R’. ﬁc"?S.
§=g/Q'R
If we expand ﬁA into a Fourler series
W= (Yot 3 (V) e COBMY + (i)r S0 18 (4-3) R
then we get: "=l X
0,77 = (M) s — 35 -
Be0 0es sessecsve trs sRL s be ( u_u ) ;
G (= V)T = (Ms)ee 3
ba(W =)= (M) ar
and :
- o
=) - PuR® '-C ( dC,_»l - ']
(ul)o '"n J 1_. 2 ). dr :1
-
| - ]
b @oamBeB [T P8 = ¢ dcy (4-5) -
3 O e A "
o PR ("1 57— = { dCx, _ 1
2 Wom=m )7, = T ) |
i' 4
- ]
LA_‘_
1
v 10 ;
SR ]
| A : - T N e i




Therefore, in order to calculate the flapping coefficients age--2,s

bn’ we must first solve (MA)O---, (MA)no (MA)nso' These are tedious

integrations. In a simplified situation, let us assume b is a constant,

e = 0, =1 and note
puR a.b

Y- m] 2 /J

we get
+—tun)rae (-3 u’)+-—1—r
g

-J‘»- a,;sar'—f .

h SR 1 _ -
et = [ ——{gh +——AdH+ 1 A’u—Jov,,r’dr—Jo ko, 7dT

‘¢ 8 (4=6)

w=(J} s [ v baw] /(o)

az=..(qm+.gm.)/_ (gi+qd)
by= (g, ps—2:0:)/ (B +a3)

Hay

1 i}
where pim——Lgmur— L pmr+ J' ! ua,,;d?-j B FtdF +

.= —J---—-p.o"rdr —j o,,7 dr———i— u‘a.-i- ubt

-3 _ _.__1_3)
=%y K<4+3Ll
1 1

R

2 8
Here, we noticed that amplitudes of the higher order harmonics of the

flapping coefficients are smaller than those of lower order harmonics.

In determining a, and b, only aw, bects. Gueyy. b,
are taken into account and Ges bess Gects Baes

In additlon, we get

Comttaifof e ran (e L)

b= [ [ s

In the equations of the flapping coefficlentsa, df, 6} and strain
coefficient CT’ when compared with the classical equations, the

11
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difference is that terms regarding the induced velocity integrals are

added.
ther obtalned:

Using equation (3-7), we carried out the integration and fur-

B - 1
Crm x-ai{0 sy 7
1 1

1 s — -4::/(305“: ug)
+AE)  2(1+43)(1 +1%

2
+a8 (4 a+4) TTa+ran”

- Agi/wsal p.l)
4(1+43)(1 +41

. 1 1 :
""’”[":(4 G+ Tia A

1
+ad (5(1 +3) Te(1 +40

+x‘( l -
N3(1 +4D)  2(1+4D(1 +4%

1 1

“73[": T+ Fsti+am

1 _ A}, /cosa, N z)] 4-8
+2 (2 (1+49) (1 +43) (1 +41) (4-8)
- AY./cosa, uz)
4(1+A4)(1 +4iD)
1 ps — A}, /cosa, ug)
6 (1+A(1 +AL
LN T (+-9)
A3, /cosa, )
3(1+A43)(1+A4
s 1 + 1 _ AY,/cosa, )
A 4(1+A43) 4(l1+41) 4 (1+49D(1+4L

Aj./cosa, )]

1
+AH (2( T+4) ~Z(1l+4A0)(1 +35)

1 Al /cosa, wio b _pa 1Y (40
Wl =4} *1 (1 =ADCL +48) 7 (1 +43) 3
® 1 ‘43‘ _ ( .
b [3( 1 +A}$)M"+(1 +A%) (1 +A19) 0.0833+0.04A8
° _.1_ * ] [-_ 1 TR ] _
+°'2<;"+ 2 M‘)) / NEEY AN (4-11)

where 9, and &,

were omltted.

It can be observed from equations (4-8), (4-9) and (4-11) that

under the same flight conditions
CT and a, are smaller when the 1nduced velocity variation distribution

(A% B, %) the calculated values of

is considered as compared to those obtalned with a constant distribu-

tion of induced velocity. However, by the same token b

{ will be much

larger. Just as discussed in [7] and [9], the longitudinal distribu-

tion of the induced veloclity has a significant effect on the size term

bI of the flapping coefficient.

This 1s very important for lateral

control. This paper for the first time introduced the analytical
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expressions of CT and flapping coefficients which are only dependent
on the flight parameters but has taken induced velocity variation dis-
tribution into account.

In addition, we have:
a,= (¢a2 P11 +Quﬁza)/(9u%3+quqn)
by = (Qi1 P12 =gy p1)/ (911l +¢12q21) |
where the definitions of P Pas Qs Qs s I are shown in [10].

(4-12)

V. AIRLOADS

Substituting the expression of harmonics of the induced velocity
(3-7) into that of the circulations (3-6), we can get the following

matrix form circulation equation: (9 )
Ad
1) :
Tie i a,

F --;L-(O) a} (5=1)

| b3
(G a,

L b )

where the elements of the matrix [Q] are shown in Appendix 1 in [10].

Then substituting circulation equation (5-1) into the airload equa-
tion (3-9) for blades, we finally get

/(égﬂ 3 ' H
ar /s Ad
45&) A
47 e ) (5-2)
4Cn) | s py |
(d; " -T[P) a:
dC

dFrl):. b:
() e
- d; "J b’ V
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where the matrix [P] is:

’ -
- N
Fo0 3 o o
- [od
0o 7 0 o 5
P o-——— 0 |
(Pl=} # O 2
o o --';—- T
® -
—— r
i 0 = 0 0 )

VI. EXAMPLE

In order to explain this method, we used the Yen-2 helicopter rotor

blade as an example to calculate the flapping coefficients under the

seven flight conditions of u=0.05, 0.075, 0.10, 0.125, .0.15, 0.20, 0.24
and the airload where u = 0.20.

R=5m b=0.0486
Ad=—0.1396 rad €=0,014

K=0.3 h=13

m,=2.755 kg-sec’/m Q =37.48 rad/sec
Py=0.108 kg-sec’/m* G.=5.73

The flight parameters were obtained from the balance calculation
of the craft. Using u = 0.20 as an example

V.i=0.2053 cosa, =0.9741
40=0.2409 rad Ae=—0.02494

Based on equations (4-9), (4-10), (4-11), (4-12) and (4-13) to
calculate the flapping coefficients, we obtained the curves showing
the relations between a5 a{, b{, 3y, b2 and the advance ratio u as
Figures 1, 2, 3, U and 5 respectively.

For comparison purposes, the flapping coefficients obtained with
constant induced velocitles are also shown in these figures. We can
see that, as we described before, the a, curve with induced velocity

variation distribution is lower than that with constant induced velocity.
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The aI curves for both types of distribution are almost identical. How-
ever, the bI curves of both distributions are quite different. The
former is greater than the latter especlally exhiblting peak values
in the low ~velocity region. This phenomenon has been observed many
times in experiments. a, and (-b2) curves are similar to those of b¥

1

but they are less than 1/10th of that of b{. From these observatlons,
it 1s reasonable to neglect higher order flapping coefficlents in the

calculation of lower order flapping coefficlents.

Finally, based on the equations of induced velocities and varilous
orders of harmonics of blade airloads (3-7) and (5-2), the distributions
OF 3y T G B 3w and (D) 5 (L), () 5 (). (5,
along the radius under the condition u = 0.2 were calculated. The
results are as shown in Figures 6-10 and 11-15. 1In order to verify
the validity of tbhis simplified method in this paper, the varous har-
monics of alrloads of rotor blade obtalned using numerical integration
[(11] are also shown in Figures 11-15. It is clear that the results of

airloads obtained using two different methods are the same. 1In addition,

Figure 16 shows the curve of variation of airload along the azimuth
angle at different radial distances. The trend of these curves 1is also

very similar to that discussed in (1] A D
v
Go{rad) —_ . vi 6.07

0.04f /
1/ Z 0.0¢{
o.0f 0.08]
.02} . ‘-“4
oot 0.08
vl

o005 0.0 s 0.20 B

0.01

Fig.1 Coning angle Gy vs. advamce ratio ¥ ° 0.05  0.10 0.05 0.0 m
1——erquation in thig paper
2--classical equations
Fig.2 Flapping coefficient o} vs. advance ratio 4
l-—equations in this paper
2-——classical equations
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p
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b ' = e Fig.4 Flappiog coefficient 1 vs.
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/./ 1——equations in this paper
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° 0.05 .10 0.3 (W) "
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VII CONCLUSIONS
The major conclusions of this work are summarized in the following:
(1) Based on the classical vortex theory of rotor and the blade
element theory, a closed form relation between induced velocity and

circulation has been established.

(2) For the first time analytical expressions for the flapping

coefficient and blade airload which not only take effect of the variation

distribution of the induced velocity into account but also only depend
on blade parameters and flight parameters.

(3) The method to estimate rotor airload introduced in this paper
is simple and suitable for engineering applications.
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A SIMPLIFIED METHOD FOR PREDICTING
ROTOR BLADE AIRLOADS

Wang Shicun and Xu Zhi
(Nanjing Aeronautical Instituie)

Abstract

At present, a simplified approach to the prediction of rotor blade airloads
is urged to be developed in the engineering application.

In this paper, firstly, relations of first two harmonic induced velacities to
the lower and same—order harmonic circulations are obtained from the generalized
classical vortex theory of the rotor. Then, based on the blade element theory,
a closed form of equations for circulation is established and, by taking the 4
flapping condition into account, simplified formulae for predicting rotor blade

sirloads are set up. In particular, expressions of flapping coefficients are 4
derived, including the effect of variable induced velocity distribution but ia i
terms of blade parameters and flight parameters only. %
Finally, a calculation of a typical example is made and comparisions of ]
sirloads with those from the mors sccurate sumerical solution are shown that 3
3

the present method is fairly suitable for aerodynamic analysis and preliminary

design of helicopters.
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STUDY ON PRESSURE DISTRIBUTION ON ROTOR

BLADES WITH THREE-DIMENSIONAL NON-STEADY THEORY OF
COMPRESSED FLUID

Jiangxl Aeronautical Soclety, L1 Zenhao and Ruan Ticusen

ABSTRACT

A solution to the pressure distribution on rotor blades
three-dimensional nonsteady theory of compressible fluid is
presented in this paper in the case of continuous wake-surface
and instant speed forward motion of a helicopter. In order
to satisfy the wake conditions, it is assumed that the press-
ure doublets move along the wake surface instead of along the
actual tracks of blades. By adding the moving pressure doub-
lets, an integral equation of the three-dimensional nonsteady
compressible fluid with superior singularity 1is obtalned when
the blades are in complex motion. A method to treat this
superior singularity was obtained to make it a continuous inte-
gral equation with super extreme values. Furthermore, the
numerical solution of this equation was also obtained. The
accuracy of the method and the equation has been proven based
on simple examples using a small computer.

I. THE PROBLEM

Up until now, the calculation of helicopter rotor loads by tradi-
tion adopts a vortex line simulated wake of irregular or non-singular
shape and uses the nonsteady incompressible fluid Pierre-Savor equation
to obtain the induced velocity at the blades and determines the lateral
distribution based on classical blade element theory. The calculated
results usually show a lower total 1lift at higher speeds or a non-zero
load at the root and tip of the blade. Even in some cases, it is
necessary to manually shift the wake position to approach the experimen-
tal results. The error for higher order load is also large. Higher
order load is the source of helicopter vibration. Therefore, 1t is
important. The reasons for the above discrepancies lay, of course, in

22
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the assumptions made. It 1s not uncommon to see the use of acceleration
potential to solve nonsteady aerodynamic problems for fixed wing air-
craft but it 1is rarely used in treating rotors. With regard to [1],

we will make some comments in the following. As for [2], it only
carried out some exploratory discussion. This paper intends to over-
come the 1lnadequacy 1n the area and to develop a new rigorous accelera-
tion potential method with nonsteady theory of compressible fluid taken
into account to calculate the airloads of rotors.

Fixed coordinate systems on the ground o-x, y, z and o-r, 6, z are
chosen with z-axis positive in the upward direction. At time t = 0O,
the center of the blade shell coincides with the original. The blade
on which the load 1s calculated is located downwind (¢ = 0). x-axis 1s
in the opposite direction to U_. U, 1s the constant forward speed of
the helicopter. Assuming that no shock wave and no separation exists in
the flow field, the blade only undergoes a flapping elastic motion as
shown in Filgure 1.

Because the attack angle curvature and thickness are not large when
the blades are working, the disturbance generated due to the motion of
the blades 1s very minute. At this time the acceleration position

4,--_27‘& exists, and the following equation is satisfied
L I ?¢ 1 b
o Tyt FER T B (1)

The following 1s to determine the relation between the acceleration
potentlal and velocity potential 3. According to nonsteady Bernoulli
equation, the acceleration potential at reposity 1s zero.

received in May 1981
% , *
R
but because:

de _ % ., "‘L+o, 26 L, 8 9 .

dt at ay 9z of
therefore
ot 2 df 2 Pa
23
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When a helicopter 1s suspending, the axial induced velocity is
the largest. Based on the momentum principle, v.=(T/2xpR*)¥*, where T
2
1s the weight of thesflying object. Therefore, ﬁz--u "z' a T/(4PR*) ~

TZST“H%T“—%&'W but S/(MRZ) in reality is between 0.07-0.1.

Therefore, o*/2 is far less than (2 —p.)/P-s S0, under small disturbance
conditions:
o  di

or

- t
only t is a variable in the integration, x, y and z do not vary.
It is clear from the above discussion that ¢=%’— and grad¢ -#‘f
are not identical when ¢%/2 cannot be neglected. ‘

When an acceleration potentlial method is used, it must satisfy
(1) at infinity, the pressure is p_, and ¢ = 0
(2) the acceleration potential ¢ satisfles the wave equation (1)
(3) the velocity potential satisfies equation (2)
(4) the wake created by the motion of the rotor produces a wake-
surface in the flow field. The wake-surface is dragging out
of the rear fringe of the blade. At any instance across the
wake-surface, the velocity potential ¢ is non-continuous with
a sudden jump iﬁ quantity
(5) on the surface of a moving blade, boundary conditions are
satisfied. This means that the normal component of the flow
velocity at any point on the surface at any instance 1s equal
to the instantaneous velocity component at this point.

ITI. MOVING DOUBLET ACCELERATION POTENTIAL INTEGRAL EQUATION

Doublets are distributed 1n the flow filled to satlsfy the five
conditions mentioned before. Doublets are expressed as (£,n,Z) and
the calculation points in the flow filled are (x,y,2z). In order to
satisfy condition (4), doubtlets move along the wake-surface. Let us
assume at timetl, the doublet is located at Rl and at ts it moves to
R2, then ¢ has a discontinuity across the surface from R, at t, to R

1 1
at t,. However, ¢ does mot jurp at R, when time is t,. As for ¢,

2
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from equation (2), it 1is clear that $ 1s continuous because ¢ is con-
tinuous at any point outside the wake-surface. When crossing the wake
surface, ¢ also leaps. This leap occurs at between t1 and t2. There-
fore, moving the doublet along the wake surface will make the motion

satisfy condition (4).

The moving doublet acceleration potential is

1. o _f(<)a.
4 omy do.a+Q. (3)

¢(x’ Y, 2, t)=—

n, is the axial direction of the doublet, from junction pointing toward
the source. In thils paper, the junction is placed on the wake surface
or under the blade. Partial derivatives are made with respect to (g,n,

t). f(t)--doublet strength function; a_--undisturbed sonic velocity.
‘l't—_a—
Ga (4)
a--distance between doublet point and flow fleld point

a=y (x—E(T)NF(I~—n(T)+(z-L () (5)
Qum—(x =P ()=(¥=MW(D)=(z=' (1) (§)

After substituting (3) into the wave equation and repeatedly carrying
out mathematical operations, 1t is possible to prove that (3) satisfies
the wave equation §,n,; are the coordinates of the doublet when it 1s
moving along an arbitrary curve. From (3)-(6), it is demonstrated that
the parameter a_ whlch represents the effect of compressibility is
incorporated into the pressure Yigggrbation in a complicated form. It

does not follow a correctlon such as vj—Mi, as used in Planto's
correction.

Let the number of blades be MM. The potential difference
between the mth blade and the blade on which the load 1s calculated
1s ym, ym = (m-1) 27/MM. Then introduce the blade coordinates, p, 6 _;

(o]

r, wo as shown in Figure 1. 6 (wo) is positive when pointing toward

3
the front fringe. The doubletois moving on the surface of the blade
when traveling from the corresponding position on the blade surface to
the rear fringe. For simplification, let us assume that 1t moves on
the z = 0 plane. Beyond the rear fringe, the motion of the doublet is

affected by the perpendicularly downward wash velocity w and it is

25
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Fig.2 Blades positions at different moment

dragged downward.
irregular wake.

Assuming w 1s a constant, it corresponds to a non-

Let the time for the doublet to move from the doublet polnt to
the rear fringe be t

01’
1= (Psin §,4+0.75b )/(PQ+U. sin(® +%a)) (7
According to Figures 1 and 2, we get
z-—-U.%—+"008(‘P+¢.). ymrsn(®+g,), 2=0  (8)
b= Ut Peos(@etiata), M= psin(@r+itad, &= ~(-Z-4,)] (9)

constant %—-f.,>t>—oo
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a={[res(v+v)- ncos(or+;.+o.)+u.(f 5%_)]‘

+(rsin(® +9,) = Psin(Qv+9a+0))+(2z —w(< —(%—fu)l)‘}m (11)

Qu= [ 7 con(® 440~ p o8 (Qv+3+0) +U{ ¥ =5 )]~V —pQuin(@r +i-
+8,))—( rsin(® + %) — Psin(Q‘l’+i-+0.))PQcos(Qf+~$.+6.)

e =o{s(Fa)e

2
In order to find the partial derivatives 3™ 1in the normal
direction, it 1is necessary to obtain the normal directional number of

(12)

the slanted helicoidal surface forward by the trajectory of the doublet.

Solving (9) simultaneously, we get

E--—U.( < v t..)+nctg Q(—+%—-t..)+w-+e.] (13)

Taking partlial derivatives of (13) with respect to £, n and %, we get
the normal directional numbers

wSi“(Q'+;-+90)' — weos(QT+va+8,), PQ+U sin(QT+ Gu+8,) (lu)

. 2 f(x)a.
After that, we must use if.nz z m asat0.

cated operations to get the following:
9 o f(=)a. be+(QA-bc)/(bd- @)

and carry out compli-

k.n: 9z Iy Gua+Qu f() “"bd'Vwabe’
+f'(') QA-b[+b¢-a/b—d+f'(r) QA- & (15)
6. o'bd Vuwi+be 6l a%/bdvw +be

whepe 0e=PQ+Usin(Qt+3a+8,)

o Sa{e e )2

\
a=(1+22) :
)

, L Qa
of= % ( 3.1 )+T
@, Q, are equations (11) and (12) where z = 0.

When the doublet 1s moving arbitrarily, the relation between the
pressure differential and the acceleration potential strength 1is

when the hellcopter is flying forward at a constant speed U_, Pdown™
pup = Ap can be written as: (&, % are the dimensionless orthogonal
coordinates of the blades).

AP = Ape(E el (18)

27

IPOPPO RPN SN

S P WG

PSR ST | Aag

l W TSV VTR VOve | Ao .

IVEVCS WY VOVOTAEY WD




‘ . .'v‘ "( "

—————

Ty
T

7 .f—r

T———— — SR e ———— T W I Pl St AasC ot il

Therefore, the veloclity potential generated by the doublet 1is

inQred,)

_ 1 /0 o e
¢="gxp_ J 2) ApeEi W) aa. « +O./a.d’

The above equation 1s for a corresponding infinitestimal area. For the

entire rotor, doublets are distributed on all the blade surfaces.
Therefore, we have to integrate with respect to the surface of the
blade and to add the number of blades to it. We get

) "—f_ nP. J J dﬁld"’h.go Apa(Es W)
*/Q 9 exp[iﬂ(Q‘l’-f-l-v-)] (19)
xmz.lj-- aﬂ. a+Q-/a- df

where S 1s the area of a single blade.

By taking the partial der;vative on both sides of equation (19)
with respect to z and using condition (5) together with assuming that
the normal velocity of the arc surface on the blade is V 22 W€ get

2% L] )
lim —ai"'lun —a:;--V.(r Yo P)= > utp lim azj J- dg,d'n,

z-+RN 20 4 e
°/Q (20)
<5 ona. w70 1 smtgriin,

When the integration is carried out, the relation between &, 3 and P, §,

must be used. Based on Figure 3, we get

& -—'—z-pb—smﬁ-o.s, ﬁ,alﬁ%f’sim_ 1 __z_lli:i
5 /L = L —bGro.s ¢ D
Py=0.5 }/Lz(n, +1+-2 +b’(g +0.5)% By=tg™ L( +1+£§‘§> |
RS L )
-1
g t——*—=% ——t

-1 = L, +1

Fig.3 Coordinatet;, M
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III. THE TREATMENT OF ADDITIVE SINGULARITIES OF WAKES

Equation (20) 1s a singularity integral equation of rotor load
under nonsfeady compressible conditions. Its core 1s an integral
which has not yet been solved to date. The double integral on the
outside and the partial derivatives for finding out the extremes are
also very difficult. In addition, pressure differential between the
front and rear fringe and boundary conditions at the tips and roots
of the blades must be satisfied. In order to find a solution for (20),
we have to study the experience of earlier work in the research of alr-
craft wings. ' '

In [1], the method used to solve the similarity equation s 1s to
use z + z, to substitute z + 0. Z, is not equal to zero and it is a
small quantity. Based on the calculated results in that paper, it is
0.035 times the arc length. Thus, a continuous integral equation 1s
obtained. That paper still used a numerical method to find the deriva-
tives by choosing a step length of 0.005 times the arc length. It
appeared to be quite reasonable significally because the difference in
normal dlrection velocity Vz at z = 0 and z = 0.035 arc length is not
too large. However, thils arrangement in practice has a significant
amount of artificlal arbitrariness. Using the simplest example of the
incompressible zero order wing load problem (in the analysis of this
method, there is no practical difference between wings and rotors),
because of the singularity of the integral, it 1is not necessary to
numerically find the derivatives. It 1s possible to move the calcula-
-tion of 1limits and partial derivatives into the integral. Thus, the
kernel becomes %. After the calculation, it becomes l:%gﬂki, where
r 1s the distance. When the coordinates x and y of the flow field
point and the doublet are 1identical, which means that we are looking
for the point-to-point effect, r = (P For the kernel of the 1integral,
it becomes -2/280. Therefore, the main diagonal elements of the matrix
completely depends on Zg- When z, changes from a small number to a
large number, the airload can change from very large to very small.
Thus, for different rotor and flight conditions, it is necessary to
obtain the load data before z_ can be decided. The meaning of solving

o]
the unsteady compressible rotor load problems is completely lost.
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In the nonsteady compressible wing problems, the lgg;;'can be
E )

moved into the double integral and the kernal function becomes

. B [ % explio(A ~MV VB +BZ))
a7 J2 Vit y+82 o

After integrating this equation and isolating the singular point,
then it is possible to find the Hadamard principal value of the
double integral. If we can separate (20) into two parts, one with
singularity and one without it and make the part wilth singularity to
have the same form as the one for wings, then we can use the results
of wings'to make the rotor loads as the wing loads plus some corrections.
This is the method used in this paper.

The following is a derivation of the solution to this equation.
Considering that, among the contributions of all the blades, the effect
of other blades on the one belng calculated is much smaller due to the
distance. It can be assumed taht the wakes of otber blades fall off
from the doublets which correspond to m # 1 at toy ® 0. Equation (20)
can be written as

S 1 .. o 101, . s =
Vilr, b @)= oo lim - [t andn Y anGa @)

20

n=0
5 “iMJo/Q 3 "8 de.JQ/Q-'“ o _ e dt (22)
) - am a+Qujor ) e M Tom, @ +Q./a.
9/Q L] e’ ) (2 )
:J'WQ_““(M_“ = a+Q../a.‘”} VI Lr @ 4y

. 9
Vv, ¥ are continuous and without singularity. Let us move lim <=

F L
intc the inner integral. Vz(3) contained all the singularities and

transform 2 - {
aﬂ. 3s
—_—— e, ———tm-T
SRS SN T T N Y (N SR S
e e im o J A D (e

dt

XJ' ° o explin(®+Q1))
-tq 9} a +Qn/a.
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Let us transform r, wo; P, eo into the blade coordinates Xys ¥y

El, Nys according to equation (21)

psing,==b,——b—, rsimb=—x——-
(24)

Pmﬁ.-ﬂ,-{-—%—l-l-RS,. r cos ¢°-yl+%+RS

Furthermore, because in the -tol to 0 integration 1limits the
minimum value of Qt 1is around 0.04 (the blade has a high span to arc
ratio; usually 1t can reach 16), thus it 1is possible to let
cosQTm 1 — QH:, sin QT=Qr, It is also possible to omit U,cos®
and all the higher terms than 1% to obtain

2

=V GG F0, 0+ -+ (2 —C)° (25)
Qu=U,(x,—-&,+U,7) (26)
U,=pQ+Udsin® (27)

Under these assumptions, it 1s posslble to express t explicitly
with t. Its method 1s similar to that of the wing. Finally, we get

V“’-——f_ AP f f d&,d‘h EAP.(GM "1)¢ lim azz

(x '-;)U R dio (28)

0 . 10 XS 1 A

where B’a 1 —M’, M-Ulmj-f" exP{' Bz [‘ + al ]} R
R-‘/(zn-E:+U.1)’+B’(y.—"h)’+ﬂ’(2 -t (29)

The symbol fﬁf represents the need to obtain the Hadamard
principal value of the double integral because the operations of cal-
culating the derivatives and limits are moved inside the double integral
sign, Let us write the inner integral as J and make x,—§,+U)=],

_ i5Q(x,—¢,)
= exs{ Y, ]u
U, oS T

(30)

ot exp{ 3 A —MVTIEG AP |} L
s -8 ~Uits }?+§—y,—ﬂ,)"+§;
The form of integral s in (30) has been solved in [4]. The inte-
gration limits are from -» to x_ . Using equation (D8) in that paper

o]
and making

ot e f0d= 228 0@ [2 0T s00a (1)

=% ~Uity
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this corresponds to the tangential motion along the blade added or

subtracted by a term which is the wake from -=» to the rear fringe of
the blade. In addition, by noticing that the terms irrelevant to the
upper limit of the integral in (D8) are cancelled in the subtraction

we get
S 1 1 R
vocr, b 0= e kL f | dad
o - - explinf®—Q(x,—£8,)/ U}
X.Z;Apo(éu ) U(y,—M)°
§ x.exp[f,;"%(xo—M‘/xg+Bi(.}’n—“x)z)]_iz (32)
‘/x;._'_Bz(yl_n')z !
x.-M\/xzoai(y;-‘h)i A ; *o=n-b
3]y = —_ i
x . B3l -mi VTS 1’da -
xemz - ~Uitey
Therefore,

Ve, b D= 1 _ldzan YanG, W

n=0
MM ?/Q P
i"u T u —S— _1.__. B 1 1 2 AN
x(gze J-,AGUd!+J-,,(m,1) AGUdf)-i- : reTN JC_lf_ldﬁnd"h
bos - = exp{in(?—Q(x,—£,)/U,}}
xngoApn(;" ) Ux(.}’x—nl)"
) rexe( P - MVREFFGID] (33)
| VAT (=) o
xo-Mv_’x'Z*F’(yn-’h)‘ A . I l‘o 22 ~&
lg - A a— 1T Y
X . Biy-mi ‘/1+re‘d)\g
xewx -8 =Uteq
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where
Y be+QdA-be/(bd- @)  QA-bf+be-av’hd |
AGU a"(w‘-&-bc’)“’[ bd od
(X2 . Q4-¢ (34)
< TV ( >] ' .
2,=8Ql|y,— “ll/Ux /

IV. METHOD OF CALCULATION

Due to the simplicity of thevblade surface, a series method can
be used which has a lower demand on the memory of the computer. Let

-—r
i

Ape(E,y ’.h)’yf :+E—V 1 --ﬁz Z Gavprel} ' 94, (&) (35)
st p=1q=1

Where gA|s 1, gA’SV I-Lé}’ g“{!z__l___ ‘V 1 -~

(36)

After the substitutlon of (33) and undergoing a dimensionless process,

a set of linear algebralc eauations regarding i.,., 1s obtalned.
In the coefficient matrix, the part contalning the singularity is ob-

tained using the method described in [4]. The finite integral in that

equation can be approximated by (21) in [4]. But the calculation
involves complex numbers. In thils case the complex expression of a
Fourier series to replace (18)

Ap= z —;— C(ADar, =5 A Days) €@ ¥ + (A p,,, +iAp..,)c""°"‘-’J (37)

n=0

The calculation has to be carried out only with respect to the

term corresponding to €*©“*», This is because the Vz(3) value obtained

from the calculation of the other term must be a complex conjugate.
Thus, if a certain order is discussed, then we get
Vem (8 +i6)——(8Pai=iBPas) + (8 =ib) —5—(APan+i800s)

(38)
=g Ap‘vl +bAplv!

where a and b represent the real and imaglinary parts of the singularity

portion respectively. Therefore, only by using the €"®*%* term, the

real part calculated corresponds to the cosine component and the imag-

nary part corresponds to the sine component.
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Equation (34) is a non-singular portion which 1s a continuous
functlon. However, its calculation is very difficult because:

Firstly, since for the factors contalining = Q reaches about

20, therefore, the inner integral 1s a large parameter oscillating type
of integral. When n increase, the value of nQ increases rapidly which
makes the number of integral knot point to increase quickly. The number
of integrals also increases rapidly which makes it impossible to cal-
~culate higher order load in practice. In order to solve this problem,
a simple function is used as an extrapolated function for the function
to be integrated at n = 0 to obtaln the extrapolation coefficient.
Finally, in the extrapolation region the integral is preciously obtained
by using the factor which 1is the product of three sample functions times

e . This method makes 1t relevant between the calculation of the
function value and load order n. It is then possible to obtaln the
highest order of load without increasing the computer time.

Secondly, the function to be integrated has very strong peak values
at m=1, Yy=1, t={, When m # 1 it also has a strong peak but the
position 1s hard to determine. 1In order to ensure that the calculated
value 1s not covered by errors, we divided into subregions between [-1,
1] for the integral in the span and used y = n as one end of an interval.
Then, Gauss-LeChardin model 1s used to get the solution.

In compiling the program, 1t 1s necessary to minimize the work
amount. If the 8th order load on the 1lift surface of a four blade
system is to be determined, the number of integrals can reach over
100,000. In reality, it 1s possible to eliminate the number of arc and
span series from the number of integrals and to elimlnate the load order
number based on the extrapolation method mentioned above, the number of
single intergrals can be reduced to about 5000.

This method can also be solved using a grid method.

The azimuth angle ¢ is to provide convenlence for Fourier analysis.
After performing Fourler analysis on both the matrix and Vz, we can get

(Vc -ygen ™ (K)-.,.l.n.'u[ a )-w.. ( 39 )
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Here the elastic flapping motion of the blade is taken into considera-
tion. Vz must be solved from the differential equation in the dynamics
of the elastic flapping of the blade. Thus, (39) and this equation

are coupled as frequency-state for a solution.

V. SIMPLE EXAMPLE

The original data of this example is taken from [5] Table 15 which
represents the flight test of the American H-34 helicopter. Because
of the 1nability to obtain the necessary funding, only the Planto-
Glowatt corrections for incompressible working conditlions are computed.
The number of calculation point was also minimized. It 1s carried out
on the slowest model 121 computer available 1n the country. Only four
azimuth angles were taken (therefore, only first order harmonic analysis
was made on the load). As for the 1ift line theory, in order to
reduce the work load for the computer, we increased the length of the
portion of blade without any wing shape. Thus, the lcad at the root of
the blade has a higher error. The results are shown in Figure 4.

Based on the comparlison between theory and experiment, the zeroth
order total 1lift and distributlon coincide very well with experimental
results. Under the conditions that the number of azimuth angles is
few and the calculation polnts are coarse, the first order load ob-
tained agrees very well wlth the experimental results.

The majJor problers in thls paper were guided by Professor Low Shi-
chuin of Northwest Industrial University.
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Pigure 4. The comparison of theory result with measured in flight

l--aerodynamic 1ift per unit span (kg/m); 2--theory; 3--experimental;
: J--blade span; 5--(a) zeroth order load; 6--(b) first order sine;
3 7-=-first order cosine
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STUDY ON PRESSURE DISTRIBUTION ON ROTOR BLADES ¥
WITF THREE-DIMENSIONAL NONSTEADY THEORY 3
OF COMPRESSIBLE FLUID 1
. E
Li Zhenhao and Ruan Tianen 1
(Jiangxi Aeronautical Society)
. -
Abstract B
A calculation of pressure distribution on rotor blades with three-dimen~
sional nonsteady theory of compressible fluid is presented in the case of |
continuous wake-surface and forward motion of a helicopter at a constant .4
speed. An acceleration potential equation is derived. A fundamental solu- 3
tion of thc pressure doublet in an arbitrary motion is given. In order to sa~ 3
tisfy the wake condition it is assumed that the pressure doublets move along g
the wake surface instead of along the actual tracks of blades. By adding the
moving pressure doublets, an integral equation of the three-dimensional non- : -
steady compressible fluid with superior singularity is obtained when the ’1
blades are in complex motion. The significant effect of compressibility on the R
higher harmonic pressures is shown in this equation. The kernel function for :
of
the integral equation is divided into two parts;one with superior singularity -
snd a continuous function with a strong peak. For the former the Hadamard B
principal value can be determined as for a wing. With the aid of a proper g
v ., . -
spline function procedure the function ¢ is separated from the function;
hence it becomes possible to calculate the higher harmonic pressures. A simple 1
typical example is completed on a small computer to justify the equation and ]
"the method. -
37




APPLICATION OF KALMAN FILTERING TECHNIQUE TO AERODYNAMIC DERIVATIVES
FOR A HELICOPTER .

(Flight Test Research Institute) Yang Songshan

)
ABSTRACT

The major obJject of this paper 1s to introduce a method to obtain
aerodynamic derivatives of helicopters using low pass filtering,
Kalman filtering and least square techniques. The characteristics of
this method are the effect of high frequency component of the rotor is
-minimized by low pass fllterlng, the simultaneous acquisiton of the
measuring nolse and duration noise during data acquisition followed by
Kalman filtering to reduce the helicopter noise level in the experiment-
al data, and finally the aerodynamic derivatives of the helicopter are
obtalned using the least square method. 1In order to increase the
accuracy of Kalman filtering, the least square method is used to obtain
aerodynamic derivatives of the hellcopter from experimental data to be
used as the initial derivatives in Kalman filtering. The calculated
results indicate that this method can significantly reduce the noise
contained in the experimental data which cuts 20% of the error. The

computation work load is far less than taht of maximum similarity method.

SYMBOLS
Vx,Vy,Vz--velocity components along x,y,z axls, respectively.
wx,wy,wz--angular velocity components along x,y,z axls, respectively.

ao,al,bl--coning angle, reverse angle and incline angle of the rotor
respectively

¢7--total distance of the rotor

¢wJ--b1ade distance of the rear rotor
x=-=-longitudinal incline angle of automatic incliner
n--transverse incline angle of automatic incliner
6--angle of elevat-on and depression
y--angle of inclination
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F, D--represent stability derivative matrix and control derivative
matrix, respectively

w, v-=represent duration noise and measurement noise, respectively.
At--sampling interval
E[X]--mathematical expectation of X
XT--transformation matrix of X
X'l-finverse matrix of X
X --estimated value of X
I--unit matrix

received in May 1981
1. INTRODUCTION

Any object has its special characteristics. Similar to other
flying vehlcles, a helicopter has 1ts own characteristics and a range
of conditions for best performance. A helicopter may have one or two
rotors and very high degrees of freedom in motion. The experimental
data also contain higher levels of noilse. Under ordinary conditions,
the longitudinal long period is basically unstable. These problems

brought a certain degree of difficulty in the processing of experimental

data. Some of the methods are applicable to fixed wing aircraft but
cannot be used for hellcopters. Since 1970, the Kalman filter tech-
nique and the maximum similarity method bave been used to process
helicopter data in other countries.

In this paper, through low pass filtering and Kalman filtering,
the noise contained in the data is minimized. Finally, the aero-
dynamic derivatives of the helicopter are extracted accurately using
the least square method. In order to achleve the highest degree of
accuracy possible, the initial derivatives during Kalman filltering
were obtained by directly applying the least square method to the

original experimental data. The calculated results show that accuracy

has been significantly increased and the errors of main parameters
were reduced by 70%. As compared to the method involving the use of
least square method based on data obtained from Kalman filtering
reported in [1], a low pass filtering loop was added. The initial
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derivatives of Kalman filtering were obtained from direct application

of least square to the experimental data instead of engineering pro-
Jections. Therefore, the accuracy is higher than those of the least
square method and the least square method using data based on Kalman
filtering as described in [1]. This method requires far less work

load in computation as compared to the maximum similarity method and

has all the advantages of the above methods. The high accuracy in cal-
culation and the simplicity in computation allows the automatic process-
ing of data as well as manual computation.

II. EQUATION OF MOTIONS OF THE HELICOPTER

In order to describe the motion of a helicopter, at least six
degrees of freedom are required. For a single rotor helicopter, it
can be described based on a nine degree of freedom model.

The following 1s to establlish the nine degree of freedom equations
for a single rotor helicopter. For ease of derivation, let us assume:

(1) the body of the helicopter is an absolute rigid body which has
six degrees of freedom;

(2) the rotor of the helicopter has three degrees of freedom, ags

al, bl;

(3) the belicopter has a plane of symmetry, i.e., longitudinal plane.

Using the body axlis as the reference coordinate system, the origin
of the coordinate system is located at the center of gravity. The
x-axis points forward, y-axls upward and z-axls toward the right.

Based on the force and torque balancing principles, the following incre-
ment function can oe written '

. aX oX X ,,, X
AV.-SV:' AV.+;K' AV,+‘;'V—d AV.+ o0, Ao, +

X X oX . X oX . X
+5v AY v Aa-+—a'&: Aa.+;;— Ac,+-I Aa,+—— Ab,

ab,
aX

., X X X aX aX .
+T§T Ab,+7¢7 A¢"+T.,A¢"+_ax_ AX +W AN+ oV Ad +w,;,

X X X
20, Ao, + 20, ACD.+—0—0'A0
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f L . . ..: .
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AV,= v AV.+3—V,AV,+ e,
aVim 2 Vo 2o A b,
A‘;’«’?{/—: AV.+%¥%AV,+... +wg,
Ad',-a;ﬂ,i{- AV,+'%%-AV,+ e
A-é.-%f—",,—: AV.+%fAV,+--- +uws,
iy AV.+:—,‘}=;AV,+.-- +w;,
a,= :f,'. AV.+:—"i,‘:AV,+...+w;l

. b b .
b|=7;’!: AV:+ aVl, AV,+"‘+UJ“

Ad=A@sin Y +A®.,c08Y
At=A®, cos §—A®, sin § cos Y +AD, sin} sin ¥
Ay=A®, sin $+A®, cosd cos Y —A®, cos § sin ¥

Rewriting the system in a matrix form, using X to represent the
change 1n status and U as the control input, then we get
Ax=F-AX+D-AU+w
The measurement equation can be expressed as
Z=H-AX+ v
If all the parameters can be measured directly, then the measurement
function is changed to
Z=AX+ 0

III. NOISE TREATMENT AND DERIVATIVE IDENTIFICATION IN THE
EXPERIMENTAL DATA OF HELICOPTERS

The experimental data of a helicopter contain the following types

of nolse:

(1) measurement noise; including the instrumentation error on
board and system error

(2) duration noise; all the factors influencing the equations of
motion will cause duration noise. For example, gust disturbance,
error in the simulation of the degree of freedom of the rotor, error
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of nonlinear simulation and system error on board
(3) coordination error and other errors.

In order to improve the accuracy of the experimental results, the
pllot was requested to operate precisely to minimize coordination error.
If possible, the test was carried out under stable airflow conditions. -
In order to eliminate the effect of the high frequency portion of the
rotor, a low pass filtering method was first used on the experimental
data. Then it was followed by the Kalman fitting technique to minimize
the onboard nolse contained in the data. Finally, the aerodynamic
deviatives were extracted from the data using the least square method.
The processing procedures are as shown in Figure 1.

! 2 3
z. |4 v
2y waaw L *FE A I e
4 |4
BRIk

Figure 1. Functional diagram
l--low pass filtering; 2--Kalman filtering; 3--least square
method; U4--least square method

In order to prevent the loss of meaningful effective signals during
low pass filtering, the cutoff frequency of the low pass filter should
be higher than the frequency of the effective signal. In addition,
the cholce of the cutoff frequency of the low pass filter should )
satisfy the sampling theory, i.e.,

fe<S

23 ¢
Let us assume that Zkis the input of the low pass filter and Xk i
is the output, then the first order low pass filtering equation is 7
Xom (1 =27f,AD) X oo, +27f,0: 2,
Assuming that the measurement nolse and duratlon noise are both ["

white nolse, then the average square value of the measurement data
should be the sum of the average square values of the effective signal
and the noise signal. For a state variable X
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n
02-02+o:-——,1,—2){'
isl
where ©O/--nolse average square value
o} --effective signal average square value
In addition
0’-foRJ

RA--intensity of nolse

If the same signal passed through two filters of different cutoff
frequencies, then the above equation can be written as
o, =f R,+0}
0% =fiR,+0}
thus

_ai,-—ai!
4 f:_fl

R
The measurement noise contained in the experimental data after
passing through a filter with a cutoff frequency fc is
o3, —o3,

f:‘fn f.

R‘Rd’f-'

Similarly, for duration nolse, its intensity is
Qum PE:=9,

f:"fn
the duratlon nolse contained in the data 1s

1 _ 2
Q=Q.f =279 g,

3 H

where
.
1 3
3 —
O‘.- " X

Passing the filtered data from a filter with a cutoff frequency
of fc into the Kalman filter, then the onboard noise contained in the
data 1s reduced to a minimum.

Since we assumed that v, w are white noilse and 9. w are indepen-
dent, then for discrete condition
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E(v-wl=0
E(w)=0
0 k¥j
E (wyw}) =Qu dasy da5= | k=i
E(wd=0
0 k7]
E (wa-v]) = Radasy 0= | k=

X aey ™ bagya Xt Crealatwe

The initlal state estimate and the coordination difference
matrices are Xx. Px respectively: i

Pym E((Xx—X) (Xx— X))

The observatlion model 1s assumed to be
Zy=H\Xrt+ve

Based on the nonpartial minimum square difference estimation
theory, we can derive

Xrn=bniaXant Ca-dle
braa= [ +F-AL
Cre=D-At
Prayn=drs-ePrindher- e+ Qe
K= Pro a5 (H e PranH i + R 3
Xreren ™ Xeaint Kot (Zoni— HynXoarn2)
Prnn= (I =Koy He ) Prun

In order to prevent divergent phenomenon in the Kalman iteration
operation, the initlal derivatives of the model are obtained based on
least square method using experimental data.

Because of passing through the low pass filter and Kalman filter,
the noise contained in the data 1s reduced to a minimum. Then, the
derivatives are obtained using the least square method which brings
about more accurate results.
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Based on the least square theory

S(x—X)'= minimum

For a measurement equation of the following form
XoAd=x.
let us multiply both sides of the equal sign by the transformation
matrix of Xm to get
XiXnd= X1k
S0
A=(XIX) ' XL Xa

IV. USING KALMAN FILTERING METHOD TO OBTAIN THE LONGITUDINAL
DERIVATIVES OF CHARACTERISTIC ROOT OF X-6 AIRCRAFT

In order to explore the validity and applicable range of the
Kalman filtering method, that method was used to process the experiment-
al results of longitudinal stability of the X-6 aircraft. The proce-
dures are as shown in Figure 1.

The experimental results indicate that this method can reduce the
errors of major parameters by over 70%. Figures 2 and 3 provide a com-
parison between results obtalned using this method and the least square
method. From the figures, 1t 1s c¢clearly shown that the error band of
the Kalman filtering method is significantly narrower.

V. CONCLUSIONS

The method involving passing the origlnal data through a low pass
filter and Kalman filter then followed by using least square method to
obtaln the aerodynamic derivatives of hellcopters has been proven to be
a practical method. Because a low pass filter 1s added to the loop '
before the Kalman fllter and because the original derivatives for Kalman
filtering are obtained directly from experimental data using the least
square method, the accuracy of the calculated results is higher than
those of the least square method and the least square method using
Kalman filtering of data as reported in [1]. The computation workload
i1s also far less than that of maximum similarity method. This method
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has the advantages of all the above methods.
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Fig.2 Phugoid Motion Daming Comparison of Least Square Estimator
and Kalmaa Filter €sttimator
1-¥ilograms; 2--meters; 3--Kalman filtering; U4--least square;
5-~theoretical estimation; 6--1/sec :
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Fig.3 M3 Derivative Comparison of Least Square Estimator and Kalman Filter Estimator

l--kilograms; 2--meters; 3--least square method; 4--Kalman filtering
method; §--1/sec
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APPLICATION OF KALMAN FILTERING TECHNIQUE TO
. AERODYNAMIC DERIVATIVES FOR A HELICOPTER

Yang Songshan
(Flight Tesi Research Institule)

Abstract

This paper-describes a _method. for extracting the aerodynamic derivatives
of a helicopter from flight data by means of low pass filtering, Kalman fil-
tering and least square techniques. The method can be summaried as follows:

a) The high frequency effects from the rotor are eliminated by low pass
filtering, and then measurement noise and process noise statistics are
obtained.

- b) By using Kalman filter, the random noise is minimized and the bias
error is eliminated, but the derivatives are not identified yet.

¢) The derivatives are identified from raw data by least square
technique. They serve as initial values for Kalman filtering,

d) The final derivatives are extracted from Kalman filtering data by
least square technique..

The method presented requires considerably less computation than the ma-
ximum likelihood method of reference (1), It is more accurate than the
least square technique and the least square technique with Kalman filtering
data of reference (1). This method cut down more than 70 perceat of error

in comparison with the least square techaique.

46a




L e e e m an AL g 4 .

A FEASIBLE SIMPLIFIED METHOD FOR FINITE ELEMENT
GRID OPTIMIZATION

BelJing Institute of Aeronautlics and Astronautics, Gong Yaonan
ABSTRACT

One of the major considerations in using the finite element method
to carry out an analysis 1Is how a computational result can be obtailned
with high accuracy and least computational effort for a specific prob-
lem. This 1s the optimum finite element discretization problem devel-
oped rapidly in the past 10 years. A lot of optimization criteria and
corresponding procedures were proposed. The purpose of this paper is
to present a new effective method for improving finite element discre-
tization in order to avoild the difficulties and shortcomings of the pre-
sently available methods; 1.e., to avoid the excessively huge computa-
tional time in the pure mathematical method and the difficulties in the
batch mode method. 1Its program is simple to compile. It does not
require special software for computation of counter lines and computer
graphic display equipment. A feasible direction for the approximate
optimization of discretization can be obtained from an error analysis.
Furthermore, a one-dimensional search 1is used to obtailn an approximate
optimal discretization. The numerical example shows that the benefits
are apparent by using the method described in this paper.

I. INTRODUCTION

When using the finite element method, similar to any other approx-
imation methods, we are concerned about whether it 1s possible to obtain
accurate and convergent approximate solutions. Usually, two aspects
can be used to promote the accuracy and convergence of the approximate
solution [2]. p-convergence or h-convergence. Let us leave alone the
fact that p-convergence 1s ineffective under many conditions, regard-
less of which of the two methods 1s used the net result is to increase
the total number of degrees of freedom in the computational model which
also means an iricrease in computational effort. 1Is it possible to main-
tain the number of characteristics of the elents unchanged and by
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adjusting the grid to accomplish an optimal numerical solution when
the above mentioned conditions? Or, in order to reach the accuracy
required what is the minimum number of nodal polnts (number of degrees
of freedom) increase necessary? Thus, a problem is laid in front of
us which 1s the optimum finite element discretization or called grid
optimization [1].

In the early stage of study an optimum finite element discretiza-
tion, a mathematical planning method has been adopted. However, the
computational effort of this procedure 1s so huge that the computation-
al budget would not have been so high even if a uniformly dense grid was
adopted to obtain the same degree of accuracy. Therefore, the research-
er in this field had to look for other avenues to find a better (not
optimum) finite element discretization method. In the recent 10 years,
many optimization criteria and corresponding procedures have been pro-
posed [3-18]. However, these methods, some of them have obvious char-
acteristics of batch-mode operation and some of them require the graphic
display equipment interfaced with the computer and the coordination of
the special software which can compute and plot counter lines. The
purpose of this paper 1s-to present an effective method to improve the
optimum finite element discretization problem. Under the condition of
not increasing the total number of degrees of freedom, the accuracy of
the solution can be raised.

II. FEASIBLE METHOD SUGGESTED IN THIS PAPER

Let the nodal poin% coordinates of the finite element grid be a
set of design variables to be determined which is represented by x. The
bar under x indicates that x 1s a vector.

received in April 1981

The constraints that x should satisfy are to assure the boundary
shape of the continuous body and not to produce irregular elements.
The optimization objective to be reached is to have the minimum (or
close to minimum) total potential energy under an assigned load. If
the initial value (nodal point coordinates of the initial grid) of

the design variable x 1is 5?. The ﬁ%mponents to change 5? are
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where 5? and x are two points 1n deuign space. The vector 4 represents

the directlon of motion when the nodal point coordinates moved from 59
to x. t 1s the amplitude of the move. Our purpose is to find a proce-
dure to locate a point x* in the design space:

FmXyted
which can make the total potential energy to reach a minimum or near
minimum. For this the key step 1s to find a feasible direction 4 using
a method as simple as possible. It 1s followed by a one-dimensional

search to determine the step length t#¥*.

In order to determine the feasible direction d, we have to consider
the error estimation of piecewise approximation under one-dimensional
conditions. Assuming f(r) is the distribution of a certain fluid func-
tion (e.g., stress energy density) and the Taylor series expansion at a
polint ri is . ,
(= e+ NS pn ) + ()

=1
where
r ot

E(m)={7 =) pon(ny e (r, r)

is an extra term. Let us divide the one-dimensional. reglon into N-1
subdivisions and each subdivislion 1s approximated by a finite element.
In order words, we are using N-1 finite elements to perform plece-wise
approximation with respect to f(r) in a one-dimensional region. If the
approximate polynomial of the element g(r) is of nth order, then the
cutoff error of the ith element (its two nodal points coordinates are
r, and ry.,) 1s

E(n)m Azt pmi(n) € (i )

Therefore, different nodal point distribution will result in different

local error distribution which in term causes different total error.

In order to make local error distributed evenly, we should let
E(M)mE(N)m..=FE, (N)= constant

where N is the total number of nodal points. Which means

(r,—r,) nylf(»"lj(nl)l -...-(r~—r~_|) .’Vw|f~ (ﬂu.. = constant
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or :
constant
VI ol (1)

Fioy —Fi==

By adjusting the value of the constant, it 1s possible to make ry and
N fall on the two boundaries of the one-dimensional region. Further-
more, equation (1) can be rewritten as

constant (2)
V £ ()l

Figy—T;=

To determine the nodal point positions of the elements from equa-
tion (2), we will obtain a nonuniform local error distribution. Equa-
tion (1) is a special case of equation (2). By adjusting the values
of k and 1, it is possible to get the best error distribution.

The above discussion 1s for one-dimensional conditions. The same
results can be applied to two-dimensional situations and the same good
results can be obtalned. Although the corresponding optimization cri-
teria can be obtalned from the estimation of error based on the Taylor
series expansion in a two-dimensional situation, yet further simplifica-
tion 1s needed because an ideal grid optimization method must be [8]
matched with low cost computation and simple program design, otherwise
the original objective of optimization is not accomplished. The exten-
sion of the conclusions for the one-dimensional case to a two-dimensional
situation is a simplification procedure. The actual steps are in the
following:

. The displacement and stress energy nodal point values are calcul-
ated based on the original uniform grid xo. With respect to each orig-
inal (both x and y directions) grid line, an extrapolated polynomial
f(r) is used to approximate the stress energy distribution along the
grid line:

N|N ¢ —p
f(ry=3 = | f )

il jay !

Jobi

where f(ri) is the value of stress energy at nodal point i on the grid-
line. Then, based on the criteria given by equation (2), the new coor-
dinates ri' of the nodal points (in the x or y direction) on the grid
line are determined. After processing all the grid lines in both direct-

ions using the method described above, we obtaln a new improved grid x
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which contains the coordinates in both x and y directions of every

nodal point from .
TmX0yd/ (1)

we get d'. The feaslble direction 4 can be obtained by unitize 4'.

d’
‘.’"”—Jr“‘ (5)

Sometimes it 1is necessary to make individual correctlons for d
thus created in order to avoid the formation of irregular elements in :
the new grid. When the mathematical planning method was used to opti- f4
mize the grid, this correction was contained in: the nonlinear constraint
conditions. Since constraints are not used here, therefore, corrections
may be needed. However, in general, only individual nodal points

sl

require occasional correction. In [15], a correction method was given f‘

Y

which can serve as a good reference.

Whether the grid bas been optimized can be evaluated from various ;
angles depending upon the objective of optimization. If from the point f:
of view of the entire system then dlscretization accomplishes optimiza-
tion. The potential energy of the total system is a minimum. If our é}
concern 1s focused on the local stress, then the calculation af stress ﬂi
should approach 1ts accurate value as close as possible. In order to h
observe the feasibility of the method introduced in this paper, three
examples involving numerical calculations are given as below.

III. NUMERICAL EXAMPLES )

As the first numerical example, let us study a square plate with
loads concentrated on the four corners as shown in Figure 1. Due to
symmetry, only a quarter of the plate 1s analyzed. Turcke [6] used tri-
angular elements and Rosenbrock method to solve the optimum discretiza-
tion problem for this plate. This paper adopted quadrilateral equal-
parametric elements. The initial even grid 1s shown in Figure 1.

-
ol
PP

|

5 R

Based on equation (2) and choosing k = 1 = 2, we obtained the optimized
grid as shown in PFigure 2. The results are shown in Table 1 where np
represents the total potential energy and ip indicates the relative i
:
’

ok
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value of the total potentlal energy using the np obtained from Turcke's
optimized triangular grid as the basis. SED represents the stress
energy density and NDF represents the total number of effective degrees
of freedom.

Turcke[6] this work (v=0.33) Carroll (v=0.0)[18] TABLE 1
element| triangular quadrilateral quadrilateral
grid optimlized| even optimized] even optimized| even even
ip 1.0 0.7601 1.3383 0.7339| 1.5451 1.07 1.2919
NDF 4o 4o Lo 4o 4o 840 L4900
SED 38.57 5377.46

From Table 1 we can see that after the optimization using the method
presented in this paper the absolute wvalue of the total potential energy
can increase by 76%. This corresponds to an increase in the number of
degrees of freedom from 40 to 4900. The benefit is significant.

p
-
P p
/
P p .
Fig.1 Square plate—initial- even grid Fig.2 Square plate——optimized grid

As the second numerical example, let us study the simple supported
beam as shown in Filgure 3. The center of the span was concentrated with
force. Turcke [17 ] had obtained an optimized grid based on the contour
lines of the main stress. According to his report, the absolute value
of the total potential energy of the optimized grid increased by 20% as
compared with that before optimization. He believed that this is a sig-
nificant improvement. In this paper, a four nodal point isoparametric
element method was used to carry out a calculation with respect to the
grids shown in Figures 3 and 4. 1In addition, an optimization was
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TABLE 2

grid even density optimized
ﬁp 1.0 1.0478 1.1633
SED a/b 15.19/14.93 38.98/10.82 3649.99/20701.91
NDF 43 63 43
TABLE 3
this method Carroll
grid even optimized even optimized
ip 1.0 1.46 1.0 1.46
NDF 12 12 12 12
O nax 3038.6 k960.9

performed based on equation {(2) by choos;ng k =2 and 1 = 0 with respect
to the grid shown in Figure 3. The »>ptimized grid is shown in Figure 5.
The calculated results are shown in Table 2. In Table 2 the SED has two
expressed values a/b where a represents the stress energy density at the
point of concentrated load and b represents the stress energy density at
the support. From Table 2, 1t is clear that the method presented in this
paper has significant improvement with regard to eilther total system error
or partial local error.

The two examples above are on concentrated load. The third numer-
ical example is a cantilever beam under evenly distributed load. The
initial grid is as shown in Figure 6. According to equation (2) and
taking k = 2 and 1 = 0, an optimized grid 1s obtained as shown in Figure
7. The calculated results are shown in Table 3. The deflection curve
is shown in Figure 8. (The numerical computation of the third example
was done by comrade Ah Yejen).

IV. CONCLUSIONS

The grid optimizaéion method given in thils paper is simpler and
more economical. It does not matter whether it 1s a concentrated load
or evenly distributed load condition, good results can always be obtailned.
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The computational time, including the entire optimization procedures,
is merely —llo-~—é— of that of the evenly denser grid method of the same
accuracy. Thls method was only explored with two dimensional balance
problems. Whether it can be further extended to three dimensional
problems is yet to be studied. Other problems such as vibration and
stability are not yet dealt with.

U
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g A FEASIBLE SIMPLIFIED METHOD FOR FINITE 3
X ELEMENT GRID OPTIMIZATION '
: Gong Yaonan '

(Beijing Insiiiule of Aeronsutics and Asiromaulics)

! Abstract b
: An important consideration encountered in the use of the finite element
method is how & computational result can be obtained as accurate as possible -
with the least computation effort for a special problem, especially for a pro-
blem of singularity with the character of stress -concentration. This is the ﬁ
probiem-of Optimum- Finite Element Di_s_cretizatio.ti developed during the recent

decade. In this period s lot of optimization criteria and corresponding proce-

dures were proposed. The purpose of the preseat paper is to suggest a new
effective method for improving the finite element discretization which can
avoid the difficulties and shortcomings encountered in a batch-mode operation
and doesn’t need the special software for computation of contour lines and
computer graphic displays. After a relatively simple operation, the grid opti-
mization can be performed by the aid of a feasible direction obtained via opti-

mality criteria combined with the one-dimensional search techniques. The com-

putational results of numerical examples presented show that in the best case ’ J

from an even grid to an optimized grid a gain of the total potential energy

A » «
was obtained, being equivalent to an increase .in the number of degrees of ‘“
A freedom from 40 to 4900. It is obvious from tables and graphics presented '1
. that quite satisfactory results are obtainable, no matter whether the global or "y
the local error is concerned.
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THE CRACK-FREE LIFE PREDICTION FOR STRUCTURAL JOINTS UNDER
CONSTANT AMPLITUDE LOADS

Aircraft Strength Research Institute, Xue Jing Chuan and
Yang Yugong

ABSTRACT

This paper briefly describes the method to predict life for struc-
tural joints under constant amplitude loads using the stress severity
factor concept and introduced the procedures to determine factors a and
B based on that concept. An approach dealing with the effect of scratch
1s derived by fitting the test data. Simultaneously, the reliability of
thlis method has been verified through the fatigue test of over 100
riveted joints.

INTRODUCTION

Structural Jolnts can be seen almost in every part of the aircraft
structure, How to determine the life of these structural Joints is a
problem of utmost concern for alrcraft design personnel. This paper
introduces a stress severity factor method to predict the life of Jjointed
plate under axial loads based on the S-N curves of simple notch test
samples (materials).

The fatigue characteristics of joints are malnly affected by the
installation of the hole, fastener and the material and assembly method
of the matching plates. 1In addition, the scratch between the fastener
and the hole is also influencing 1ts life. The stress severity factor
1s an indicator of fatigue quality which takes the above factors into
conslderation. The effect of scratch is considered through the correct-
ion from the S~N curve of the material. It should be pointed out that
this paper 1s limiteded to a one-dimensional stress problem.

This paper has been reviewed by Chief Engineer Fong Chungyuch. The

work was assisted by Assoclate Professor Yang Chingshon of Northwest
Industrial University. Assistance also came from comrades of Shenyang
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Ai. .raft Company and Hongan Aircraft Company. Sincere appreciation to ‘
Lju those who assisted is expressed here. _j
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I. STRESS SEVERITY FACTOR [1]

Stress severity factor 1is a parameter which reflects the effect ]
of the 1nstallation of the hole on the fastened plate as well as the
materlals and the assembly method of the fastener and the matching plate.

Y L et T2 Baw M shin o Y e "
P RSN T PR
- R

As shown in Figure 1, the maximum local stress along the edge of R

the hole 1s R p L

: 0_.-1Cy‘“ 6-+K27¢% -
3 the combined stress concentration factor 1s ‘
o K=0uu/0w .-:

In order to indicate the effect of surface status and assembly type
under fatigue load conditlons, two coefficients a and B are introduced
to the define stress severlity factor as:

Y

v

-l

received in December 1980.

Ky=-%.BT(Kn %— 9 +K, Tﬁ;—) (1)
= where R-~transfer load of the fastener

;; Pp--local side load

Kt--theoretical stress concentration coefficient

r} ij-—compressive stress concentration coefficient

- a--hole surface coefficient

[ B--hole filling coefficlent

8--compression distribution coefficient

*i In the elastic region, equation (1) can be rewritten as:

2 Ky=aB(f (K, 0)+£(K))

%. Therefore, Ky is only affected by the structural form (a,B,e,KJy,Kt)
k' and not influenced by the properties of the material and stress load.
‘! When the material and fastener enter the modern region, this is no

longer true.
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Fig.2 & and B specimeas -

1--p1até; 2--washer; 3--screw head; d--crack warning transducer

The K,o,, at stress concentration point in the structure approx-
imately represents 1its life. Therefore, it 1s possible to obtain the
desired uniform structural life by the proper design so that this value
is as identical and as low as possible. In the prediction of structural

f K
life, v

II. o, B COEFFICIENTS

This paper does not wish to discuss the load distribution compu-
tation of jJoints. Therefore, the remaining major problem in the deter-
mination of stress severity factor 1s to determine a and 8. On the
basis of the stress severity factor concept, this paper proposes the
following method to determine these coefficlents:
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1. Determination of a coefficilent

Two samples with holes made of two different materials and 1ldenti-
cal geometric shape were used as the sample (see Figure 2). The theor-
etical stress concentration coefficient is Kt' One sample has a stand-
ard hinge hole, the other has a drilled hole. Let us assume for the
hinge hole a = 1. Based on equation (1), because B=1,R=0, P,/Wi=o,,
therefore,

K, =K,
where KyJ is the stress severity factor under the hinge hole condition.
Similarly, the stress severity factor the drilled hole is

Kyz-aK'

Using a certain level of stress for the fatigue test of the drilled
hole, its 1life is N.. On the S-N curves of the standard hinge hole
wlth various stress concentration coefficlents, it 1s possible to find
the theoretical stress concentration coefficient Ktl which corresponds
to the same level of stress and life as Na:

KVZ-Kn-aKC (2)
e =K, /K,

2. Determination of the B coefficient

The geometric shape of the specimen 1s identical to that with a
hole. The only difference is that inside the hole there is a non-load
conducting fastener. According to equation (1), the stress severity
factor of a screwed specimen 1s

K,=aBK,

Using a certaln stress level to conduct the fatigue test of a
screwed specimen, 1lts 1life is NB' The theoretical stress concentration
coefficient K, under similar conditions in terms of stress level and
life as NB can be found from the S-N curves of standard hinge hole of

various stress concentration coefficients. Then
Ky=aBK,=K,, (3)
B -K,,/(QK.)

" The results are shown in Table 1.
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Table 1

4 I
: a | B
/ . |4 * &= 1
lg xmcal t |
2 - “ £ %R 1074 ; |
|7 zmced | 1.1 ;
3 | ; R B 0.86
s a | :
: 9 xmedl 0.75~0.9

l--hinge hole; 2--drilled hole; 3--screw connection; 4--this study;
S5--reference [U4]; 6--this study; T--reference [4]; 8--this study;
9--reference [4]

III. THE EFFECT OF SCRATCH [2]

Under fatigue locad situation the fastener under load moves relative
to the assembly hole to scratch the hole wall which reduces the fatigue
life of the basic plate. Based on the experimental data of joints, we
gradually obtained the relation between the S-N curves with correction
for the affect of scratch and the S-N curves of materials with a notch
by fitting the data:

higl_) Yoad lgNﬁ- = lgN...
medium load 18V 110 = 0.94461gV ue +0. 1109
Tow load 1g:V/iem0.76861g:V oo +1.0217 3

(4)

- ——

where VN,. -=-=1ife after correction for scratch
Ve -=1life of material with a notch

The above relation was obtained from the Smax'N curve corresponding
to a stress ratio R. Based on this, it 1s possible to give the con-
stant life curve of the joint with correction for the effect of scratch

(see Figure 3).
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Fig.3 Coostant life curve taking account of cratch

l--(kg/mmz); 2--material; 3--(kg/mm2)

IV. PROCEDURES TO DETERMINE THE LIFE OF JOINTS UNDER CONSTANT
AMPLITUDE LOAD USING THE STRESS SEVERITY FACTOR

1) Determine the internal force distribution of the joint under
fatigue load in order to determine the transfer load of the fastenea,
the side load Pp and the reference stress o. , etc.

2) Base on the geometric shape and assembling form the joint to
determine a, B, Ky, K,, 9, that the stress severity factor Ky at all
the stress concentrating polints are known.

3) Determine the position of maximum product of stress severity
factor and reference stress K,o,,.

4) Base on the stress severity factor and reference stress at that

point to locate the predicted 1ife by looking into the corresponding

life curves of ldentlical material and equal stress concentrating coeffl-

cient with the affect of scratch taken into account.
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1,2~—crack point; 3—base plate; 4-——joint plate; S5—rivet; 6—rivet heads on same
side of base plate; 7,8~—typical; 9,l0--crack point; ll--typical; l2--constant space
array; l3--base plate; li——joint plate; 15—rivet; l6--rivet heads all on same side
of base plate; 17——organic glass; 18,20-—01l paper; l9--specimen; 21--wooden plate

22--plastic foam.
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23,29,31,35--experimental; 2“,28,32,36--ca1cu1ated§
25,29,33,37--mis-matched array; 26,30,34,38--kg/mm

63

P DA S Sy

-

» A B TSN

- e e e e
PPN




V. JOINT FATIGUE TEST

1) The specimens have two forms, i.e., the rivets are aligned
parallelly and mismatched . The basic plate thickness 1is 4 mm. The
Joint plate thickness 1s 5 mm. The plate material is LY12-CZ. The
rivets nave buried heads. The diameter is ¢ 6 and material is LY10.

The fiber direction of the plate material is parallel to that of stress.
The shapes of the specimen are shown in Figures 4 and 5.

2) The specimens are sandwiched. In order to effectively reduce ' i
the side vibration and bending of the specimen under load, a guidance
plate was installed as shown in Figure 6.

3) The static destruction was shearing of rivets. Fatigue des- ;
truction all occurred at the first row of rivets on both sides. The ?
experimental results are shown in the S=-N curves in Figures 7-11.

| R

VI. PREDICTION OF JOINT LIFE (3,4]

l. Calculation parameters

Let us choose a = 1.1; B = 0.75, 6 = 1.4 (considering the effect -
of rivet head).
KJy = 1.3 for parallel array
= 1.3 for mismatched array with four holes in a row
= 1.2 for mismatched array with three holes
Kt for parallel array = 3.02 for the center hole
= 3,2 for the holes on the side
for mismatched array = 3.2 for 4 holes in a row
= 3.1 for 3 holes in a row

[ |
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2. Conversion between K and S
J

In the calculation of stress severity factor, corresponding to a
;T' fatigue load level (Pmax and Pmin)’ the stress severity factors are
aa =

2 Kymax and Kymin respectively. In the elastic region, Kymax Kymin'
b If the fastener enters a molding stage, then the two are not equal.
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Fig.11 S-N curve

l--experimental; 2--calculated; 3--parallel array; l&—-(kg/mmz)

In order to carry out the calculation for l1life prediction, the stress

severity factor K, = K corresponding to Pma and Pmin is used.

y ymax
Then the equivalent stress level is:

X

KyaKvm
SU- (S-.g +S:m)/z

Se=(Saus—Sain)/2 (5)

where S%ivm KyauSain/ Kvaia

Then, life can be calculated based on the procedures described in
section IV of this paper. The results are shown in Figures 7-11.

VII. DISCUSSION OF RESULTS

1) The stress severity factor method was orignally proposed by
Jarfall [(1]. It was further developed and used in some countries in

the fatigue design of aeronautic structures. Thils study considered the

modeling effect of the rivet. In this paper, the stress severity factor
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concept was used as the basis to obtain coefficients o« and 8 and the
results were also given. Thls paper also proposed an empirical method
to determine the effect of scratch through experiments. Thils paper
extended the stress severity factor method to the calculation of the
S-N curve of joints. It provided a base for the preliminary life pre-
diction calculation under programmed load conditions.

2) In order to verify the reliability of this method, a batch of
riveted joints were fatigue tested and the following conclusions were
obtained:

The calculated destructed portion coincides with the experiment.
The ratlos between calculated results and experimental results are
mostly between 1.0 and 0.75.

This method was further verified in the fatigue experiment and
results analysis of a certain wing Joint of an aircraft.

3) There must be a lot of shortcomings and errors in the problems
described in this paper. Your comments are welcome.
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THE CRACK-FREE LIFE PREDICTION FOR STRUCTURAL
JOINTS UNDER CONSTANT AMPLITUDE LOADS

: Xue Jingchuan and Yéng Yugong
(Aircraft Siremgih Research Instiluie)

Abstract

This paper briefly describes a method of detailed designing and predicting
the fatigue life for structural joints under constant amplitude loads by means
of the Stress Severity Factor concept

! 8

Ky=

[Kn—'g‘ ) +K. —}3’-]

a
Ter dt W i

Based on the Stress -Severity Factor concept, an approzch for determining

I S

factors @ and B is developed and some of their wvalues are derived from fa-
e tigue tests. ’ )
3 An approach dealing with the cratch is created by fitting test data, and
b the relation between the corrective S~-N curves of structural joints aad the
P7 S=N curves of materials is defined.
? More than 100 specimens of revited joints were tested. The test data

obtained were compared with the analytical results favorably and thereby
! testified the feasibility of this method.

In addition, the present method was employed to predict the full-seale .‘
S~N curves of structural joints for their preliminary design and gave quite
good results under the given conditions.
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AN ANALOGY METHOD FOR CRACK INITIATION LIFE PREDICTION

Zhang Fuze
Chinese People's Liberation Armed Forces, Air Force Research Institute

formula of thils analogy method was deduced in this paper. It could
practically eliminate the scattered effect of the constant Q in the Miner
equation (zj%u-o) . Therefore, it was capable of improving the accur-
acy of the 1life predlction. This paper also gave the analogy prediction
of specimens under five types of spectrum load and an example of analogy
prediction of large scale structure components of an airplane. It was
also verified by fatigue tests.

ABSTRACT ]

This paper presented an analogy method for crack initiation life :
prediction of components. It employs the life (or useful 1life) of a 3
known component obtained from endurance tests under spectrum load to i
predict the 1life of some type of components untested. The prediction ;

In the research of analogy life prediction in 1979, Professor Kao
Chengtung of Beljing Aeronautics and Astronautics Institute has given
hils guidance. The verification work was carried out by Englneer Ho
Tungen of the Air Force Research Institute. In the analogy computation
of specimens, Engineers Koo Ming yuan and Zhang Shechak provided exper-
imental data without reservation. Many thanks to these people.

I. JINTRODUCTION

As 1s commonly known, ever since Miner's theory was established
in 1945, although it is still widely used, it still has some inadequacy
and 1lnaccuracy. The most serious problem 1s the scattering of the con-
stant Q in the equatlion. 1In theory Q = 1; however, in practice it
scattered quite widely (several times in several 10 times in difference),
This brings significant errors in life prediction calculation.

Thils paper deduces an analogy crack initiation 1life prediction
calculation equation of components based on the Miner theory and the
equation $§"N=c¢ . In the computation, 1t 1s not necessary to manually
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select the highly scattered Q value. Therefore, it 1s possible to
ralse the accuracy and reliability of l1life predictis Consequently,
full scale fatigue tests can also be reduced.

In the design of airplanes and the calculation of airplane char-
acteristieés, the analogy method has been used over a long period of time
and 1s widely applied. However, using an analogy method to calculate
the fatigue 1ife of components has not reached a mature stage with methods
and complete set of equations. The author of this paper derived an
earning-loss analogy equation (same principle as the one used in this
paper) in 1969 and carried out some practical applications.

II. THE ESTABLISHMENT OF ANALOGY LIFE PREDICTION EQUATION
FOR CRACK INITIATION

Use the Miner equation to start with:

3 "
A Ly (1)
where A--cycle number of components with known life

ni--tbe cycle number of the ith order load in one cycle of
spectrum load for a component with known life

Ni--destruction cycle number under ith order load and then . 52
introduce the equation
S*N= ¢ (2)

where Sa--stress amplitude of the -load
N--destruction cycle number of the material corresponding to
a stress amplitude of Sa‘ '
m and c--relevant constant characteristics to the material,
shape and c¢yclic load of the component.

From equation (2), for the same component at the same location,
there 1is
SeUN,=S3N, (3)

Received in May 1981.
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l.e.,

N, Se \™
No=(5 (4)
where Sap——an arbiltrary constant stress amplitude
Np--destructive cycle number corresponding to Sap’

Now, let us multiply equation (1) by Np,

im]

From equations (4) and (5):
(6)

A 2 n,( ) =QN,

Similarly, the expression for the components with unknown 1life is

A’ (S.,) (7)
Under the conditons that the structural form, load properties,
loading sequence and material type are basically the same for components

with known and unknown lives, we have

A i (32)" =¥ X () (8)

) . .

vl -
2n(3e)

Equation (9) is the computational analogy equation for the predic-
tion of crack initiation 1life of components. If the spectrum load 1s
not a stress spectrum but an overload spettrum, then 1t 1ls expressed
in the following.

In the elastlc region, for the tsame component at the same location,

the stress amplitude is proportional to the overload increment. Then
we have
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where Agi—-the ith order overload increment of component with known 1life
Agi--the ith order overload increment of component with unknown
life
Agp--arbitrary overload increment

Equation (10) is the analogy calculation equation for known over-
load spectrum. In equations (9) and (10), because Sap and Agp are arbi-
trary quantlties, then let Sap.= 1l or Agp = 1 to further simplify equa-
tions (9) and (10). ‘

As for the analogy prediction for identical components, in engineer-
ing 1t 1s possible to use the average value m as an approximation and
further to eliminate the effect of cyclic characterics on the value of
m to make my, = m! = m and to convert the stress amplitude to stress

i
increment (AS = S S Thus, the followling simplified equation

imax"~ 1min)'

can be obtained:

J R
E"‘AS:- (11)
or

K
2imagr

Veatil——) (12)
DMLY o

is]

Based on the above equations, as long as the value of m is obtained,
the unknown life A' can be determined.

III. VALUE OF m AND ITS EFFECT ON LIFE
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1. The value of m during the crack initiation period is usually
determined experimentally in englneering where good z-N curves are not
avallable. Under the conditions that no test was performed, 1t 1is
usually taken as 5-10 [1]. From the analogy equation, the error of the
relative 1life obtained from the analogy method using m is smaller than
that of the absolute l1ife obtained directly from the Mlner equation by
choosing Q. This is because whether the m value was too large or too
small, the numerator and the denominator would increase or decrease
simultaneously. The effect on the relative life (A1/A) obtained from
the analogy method 1s very small. For example, the data and curve
shown in Figure 1 were obtained based on different m values using the
analogy method. They were calculated based on the identical components
of two different airplanes under thelr own spectrum load using the
analogy method.

VA M/ Pose | os0 0.71] 0.62{ 0.1

Fig. 1 Reiation between A"/A with m

From Figure 1 we can see that therelative 1ife decreases with
increasing m value, but the change is gradual. When the value of m is
increased by 1, the relative 1life 1s decreased by 5%. In the Miner
equation, when the constant Q is increased by 1, then the 1life 1s in-
creased by 100%. Furthermore, the variation of Q in the calculation
is large which causes a larger error 1n the calculation. Based on

these results, we know that for the sample component, the analogy method

will not cause large error in 1life prediction due to er :or in choosing
m. Therefore, this analogy method not only eliminated the effect of Q
value on the Miner equation but also demonstrated its superiority. In

addition, its superiority has been demonstrated by the reduction of life

prediction due to the decrease in the error caused by the m value.
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2. The m value during the crack initiation stage, when perfect
S-N curves are avallble, can be used to obtain.mi and m; under differ-
ent cyecling characteristics R1 to further improve the accuracy of the
estimation. Under thls condition, it 1is also possible to directly use

Miner's equation and eliminate Q to perform the analogy procedures.

IV. ACTUAL SAMPLE OF ANALOGY METHOD FOR PREDICTION OF CRACK
INITIATION LIFE

1. Specimen analogy method example

The experimental fatigue data used in the specimen forming 1life
prediction using the analogy method were obtained by Beijing Materials
Research Institute in 1980. The loading spectra used in the tests were
variable average spectrum, constant average spectrum, double wave (two-
flow) spectrum, fatigue indicator spectrum and constant damage spectrum.

. The tester was a pcl60N hydraulic servo fatique tester of the Schenck Company.

The loading sequence of all the spectra 1s low-high-low. The specimen
material is lead alloy Lyl2-CZ. Its mechanical properties are shown in
Table 1. The thickness of specimen plate is 2.5 mm and K, = by,

TABLE 1. Mechanical properties of the specimens

Ous (kg/mm?) oy (kg/mm?) §10(%)

35.6 47.8 17.4

The analogy method was used for this speclmen using the fatigue
test results which give more accurate programmed spectra. The procedures
of the analogy method involve the use of fatigue test 1life of a set of
specimens under a particular spectrum load to predict the life of
another set of specimens under another spectrum load. Then the cal-
culated results are compared with those obtalined from experiments to
determine the relative error between the two conditions. Let us now use
the constant average spectrum and fatigue spectrum as an example to
carry out the analogy prediction with results shown in Tables 2, 3 and 4.
The m value in the calculation took into consideration two conditions:
one condition was to consider the effect of the cyling characteristics
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Ri on m which involved the computation of the values of my at different
Ri and the other condition was not to consider the effect of Ri on m
which used the average value of m in the computation.

Similar methods were used to carry out analogy calculations to pre-
dict specimen 1life under variable average spectrum, double wave spec-
trum and constant change spectrum loads. In the meantime, the Miner
equation was also used to calculate the life of the specimen and the
results were compared with those of the fatigue test. They are also
shown in Tables 5 and 6. In order to compare the calculated results
with the experimental ones more directly and realistically, no correct-
ion was made for the calculated and tested lives. Therefore, the cal-
culated lives 1n Table 5 and 6 are true refléctions of the analogy
method with respect to the Miner equation. The fatigue tested 1life is
the realistic view of the specimen under spectrum load. If the tested
1life of the specimen has already taken scatter coefficlent and other

data treatment into consideration, the calculated 1life based on the analogy

method contained the same scatter coefflcient and data treatment.

The S=-N curves used 1ln the above calculation were also determined

by Beljing Materials Research Institute. The properties of the material

of the speclimen and Kt are ldentical to those for the speclmens used
in the above mentlioned five fatigue tests. Therefore, the S-N curves

used in this analogy calculation are relatively more accurate and relevant.

2. Analogy prediction example of fatigue initiation life of
large scale structural pleces

The fatigue test data used 1n this analogy prediction were the
results of full scale fatigue experiment of the main stress parts on

the wing and fuselage of airplanes of the same type for different appli-

cations. This fatligue test of large scale structural components was
performed on a special equipment. The error of load increment and load
indicator 1is less than 2¥%.
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Table 2 The unalogy computation of the specimens
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Table3 The snalogy computation of the specimens
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1—parameters and computation of the fatigue indicating spectrum; 2
of; 4~—-not considering the effect of; 5—data in the table are the full cyc‘le values of the fatigque

const (average m value) in the

indicating spectrum; 6--not considering ths effect of
computation; 7—a cycle is 50 flight hrs; 8--notes,
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Table4 The analogy computation of the specimens ' 57
o BB L) ERSERERET, —@RM (A1) MTHARRRSE) =35.0, WT =35.0x50=1750/h 8¢ _;
3) I8 (OTERMEEAAT, SERR (K1) HEARBRRACL =640, BT =64.0x50= 320040 o
(1) ERRHREAT, URERBRESE (L =64.0) REAXTHYRTHORASSL, RB2Z, B '5.
— e ! !
IPHRAMR, REIKE. =
(2 S magt
& mAgy )
’ b ] § ——
K Ve—Zt— o SILISHH 30.75 | BT =36.75x50= 183700 (R B sx\)-‘ﬁ 6 1
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). 3 29 3
: anﬂ}'" - -
A==t A = 3738.85%35:8 _g) 0 BT =62.0x50 =3100/hM (RMIK)>- 1D '
3 _ 5382186 ( > B
Y mag] _ O
iw] r]

.

1-——fatigue tested life; 2-—analogy computed life and error; 3—(1) under con- .
stant average spectrum, average fatigue test life A'=35.0 for a set of speci- b
mens (six), i.e., T'=35.0x50=1750 hrs; 4--(2) under fatigue J.ndJ.catJ.ng load, -
average fatigue test life A\=64.0 for a set of specimens (s:Lx), i.e., T=64.0x50= "
3200 hrs; 5—(1) under fatigue indicating spectrum load, using the specimen ’
fatigque test 1ife (A\=64.0) to compute the specimen life A' under constant .
average spectrum load using analogy computation. Taking the results in Tables 3
2 and 3 to perform analogy computation; 6--i.e., T'=36.75x50=1837 hrs (error e
5%); 7—(2) under the constant average spectrum load, using the specimen b
fatigue life (A'=35.0) to compute specimen life \' under fatique indicating "-:
spectrum. Taking the calculated results in Tables 2 and 3 to carry out analogy v
_camputation; 8—i.e., T=62.0x50=3100 hrs (error 3%)
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Table5 The comparison between the results of fatigue tests and analogy

computation
grzasg  REHAAECRD \'i) HESRREO AT AR, o
e <:,§!§;3;,i f,,,"':a‘,'ﬁmi H-Rd?GI AR W,
@ | )] 6)] @—@/(D -3/
n .10 S & 1750 - 1837 248 5% 23%
q_= AWt 200 | 3100 2611 1% 18%
o g z850 4 1950 ' 1897 1750 3% 1%
. 5.0 S Y) 1750 | 1799 1930 3% 10%
» L] S 1950 | 1e92  :  aus 2% C 0%
w" & WP o, 300 | sz |7 290 2% 9%
\ 3 EH@_ 3Y. 1950 | 1e3s | 180 16% %
% REMD Y 2180 . 2576 | asss | 19% , 19%
. #ym 37 arse ! yses | isea | % | 3%
e mw 3e!  21e0 2505 . 2095 ' 18% 3%
L= ®:ir  31! 3200 ;2628 2692 18% 16%
> " ® 38| 2160 2830 2568 | 3% i 9%
¥ g :r IRE 5 | 350 : 1138 : 1537 . 20% i 62%
! R A2 gol 2180 . 1803 ! 13335 ; 16% ’ 38%
P .21 ST 7so | 12se | s | 3% . 6%
L L - I S Y A T SR AN 1) SRR\t SR, 1)

Key: 9--specimen type; 10—results; 11--item; 12—fatigue test life (hrs); 13—
life by analogy computation (hrs); 14-——relative error of calculated and
experimental values; 15--considering the effect of R (m is a variable);
16—not considering the effect of R (mis a constanil:) H 17-con51der1ng
the effect of R;; 18—not mcludmg the effect of R.; 19,20,21,22,23,24,25,
26——analogy; 27—-oonstant average; 28—fatigue J.rxiléatmg 29—var:|.ab1e

average; 30--constant average; 31-——variable average; 32—fatique indicating;
- 33—variable average; 34--double wave (two flow); 35—constant average;

- 36-~double wave; 37——fatigue indicating; 38-—double wave; 39--equal damage;
- 40-—-double wave; 41—constant average; 42—equal damage
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Table 6 Specimen lifescalculated with Miner’s formule 58
S/ o | REURGE
’y’f EIL--QitNne Y LT RER S
x® I IR
=0.5 =1 [Q=15 : % % . 28
# 4 07050 Q=05 | 0= Q=15 | O3 S
1950 : 1320 2641 3961 32% 35% 103% | 1897 . 3%
) 1750 | 1580 3180 i 4 9% 82% 173% 1799 | 3%
( 3200 : 1814 3628 | 5441 3% 13% i 70% 3133 ! 2%
QWA | 2160 - 1327 2654 | 3981 39% 23% . B4% ' 2576 | 19%
,\.) Lk 1] 950 1243 2486 . 3729 1% 162% ! 283% | 1138 l 20%
WE | REAXARTRMSGEREW )

‘l-cart‘put:atlon, 2--spectrum; 3—fatigue test life; 4—life computed based an

Q; 5—life based on analogy computation (considering the effect of R. ;)i
6—-er§or 7--life; 8—error; 9--variable average; 10-—constant average; n—1*
fatigue indicating; 12-—double wave (2 flow); 13--equal damage; 14--note;
15—-only the accurate solutions (considering the effect of R, ) are listed for
analogy camputation

Table7 The comparison between the lives estimated by analogy and the

fatigue test lives of large components

_—\ @! WHERLERS | MEALARRS i .o [ s o -
O L aEnEeaan Y| axseand P J,/’ 14
3 Y 0835 i 0.65 l 2% ! as
~ | :

E 5 » @‘ 0.615 | 0.65 5% ‘ 12)

1—specimen; 2—results; 3——item; 4--relative life (A\/A') of the two structural
camponents based on analogy camputation; S—relative 1ife (A/)A') of the two
components in fatigue test; 6—relative error; 7--equation; 8-—overloading
spectrum; 9-—stress spectrum

The spectrum load in the fatigue test was measured using the same

instrument on two types of airplanes. The compilation method of the two
spectra 1s identical. The load increasing sequence is also the same
(low-high type). Under these two spectrum loads, the fatigue crack

| positions of the two structural pleces are also the same.
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In order to compare the effects of overloading spectrum and stress
spectrum on the prediction equation, the analogy computation of this
large scale structural component was carried out using these two spectra.
The stress spectrum was obtalned by directly measuring at the cracked
portion. The my and mi used in the computation are obtained from the
S-N curves together with the consideration of the effect of Ri‘ However,
since the variation is not too large, the average value m was used in
the computation. The results are shown in Table 7.

V. CONCLUSIONS

1. Tbhils analogy life prediction method, through the verification
of analogy computation of the five sets of specimens under five differ-
ent types of spectrum load and large scale structural component analogy
computation and fatigue tests has demonstrated that for the prediction
of 1life of components of simllar type, as long as the determination of
m is reasonable, the analogy computation presented in thils paper pro-
vides results of higher accuracy. They also agree very well with fatigue
test results. Under this condition, the effect of the cycling character-
istics Ry onm (average value m) can be neglected and equations (1ll) and
(12) can be used directly.

2. This analogy computation method to predict life is more con-
venlent for the life prediction in the design stage. Using the life
(known 1ife) of the component of the original airplane, the life of the
newly designed similar components can be calculated using this analogy
method. Thus, it is possible to figure out whether the newly designed
component has a higher or lower life of the original standard airplane.
It is then very meaningful in design changes. It 1s also possible to
calculate which components have a weak life and which components have a
conservative life. Thils serves as a reference to the evaluation of the
life of the entire airplane.

3. When the spectrum load of individual airplanes in use or the
spectrum load of airplanes (or spectrum load of fatligue test) varies,
this analogy method can very conveniently compute the variation of 1life
caused by these changes.

79

I VR

a’

- Y

"




4. From the computed results in Tables 5 and 6, it is clear that
the results obtained using this method have a large difference as com-
pared to those with Miner's equation. The causes are (1) the effect of
scatter of Q is reduced, (2) this analogy method is a combination of
the Miner equation and expression of S-N curves. It 1s not necessary
to repeatedly check the S-N curves or constant 1ife lines in computations.
Therefore, the errors of the checking and plotting figures can be drasti-
cally reduced; (3) the effect of m on relative 1life is reduced.

5. For the analogy computations of different components under the
conditions that the load characteristics and working sequences are baslie-
ally the same, this method 1s still applicable based on the Miner theory.
However, due to the difference in structural type and material, a cer-
tain degree of error 1is created. Therefore, some correction 1s necess-
ary. However, some experimental results indicate that under the same
load characteristics and loading sequence, different materials in some
cases do not affect Q significantly [2]. It means that in some cases
different materials do not affect thils analogy method significantly.
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[2] French, H. J. (1933) Trans Amer. Soc. Steel. Trsat 21 899.
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AN ANALOGY METHOD FOR CRACK

INITIATION LIFE PREDICTION
Zhang Fuze

(dir Force Research Insiitute)
Abstract

A method for crack initiation life prediction of components is presented.
This method employs the life of & given compoment obtained from endurance
tests uander spectrum load to predict the life of another uantested same type
component by analogy.

The formula for aaalogy life prediction is deduced from Miger’s theory

and formula S®N=C as follows,

Su \™
A= "‘ “A\Sy A
o (S
i=}]
or
28y
A -t A
Z)

where %, S., Ag; and A are load cyclic number, stress amplitude, overload incre-
ment and life cyclic number of the given component in i levelin}, Se,, Ag; and
)’ are those of the unknown components S.y and Ag, are any constant stress
amplitude and overload increment (they may be taken as unit in calculation)s
m,m; are constant (generally between5and 10) and may be estimated from
the S-N curve or by experiments. In life prediction with this formule it is
unnecessary to choose the constantQin Miner’s formula, therefore its accuracy
may be improved.

The lives of large components of two aeroplanes and the specimens under
five different loading conditions are predicted by this analogy method. The
results arc quite consistent with fatigue test results and thc comparison is shown
in tables (4 ) and (3). This demonstrates that the formula presented in this
paper is more accurate, particularly for components analogous to given ones,
and may give quite satisfactory resulte provided the value of the m is estima-
ted appropristely. According to Miner’s theory it is possible to apply this
snalogy method to components different from given ones, but it is necessary to

make appropriate correction im actual use.
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FLOW MECHANISM AND EXPERIMENTAL INVESTIGATION OF ROTATING
STALL IN TRANSONIC COMPRESSORS

Beljing Institute of Aeronautics and Astronautics,
Lu Yajun and Zhang Shunlin

ABSTRACT

In this paper, a vortex system flow model has been established
for rotating stall based on vortex theory. A comparison of the calcul-
ated flow field using that flow model with experimental data was per-
formed. Thils comparison indicated that its results agreed with the
actual flow condition better than the small linear perturbation theory
and other methods.

This paper gives ackmailaiexperimental investigation on the trans-

sonlc rotor undergoing rotating stall at non-designed rotation speed
(8000 revolutions/minute; 13000 revolutions/minute; 15000 revolutions/
minute). Some new flow phenomena worth further studying were observed.

FOREWORD

Due to the complexity of the physical phenomenon of compressor
rotating stall which 1s affected by many factors including some factors

on board, despite the fact that for many years people tried to determine
the relations between the aerodynamic parameters and the geometric para-

meters of the compressor and the characteristic parameters under the
working condltions of rotating stall, no satisfactory result has been
obtained. Recently, along with the improvement of the characteristics
of axial compressors, rotating stall and this type of nonsteady flow
phenomena have a more serious influence on the compressor characteris-
tics and destructive effect. It frequently causes the blade of the
compressor to break. It even resulted in major incidents involving
loss of airplanes and human lives. Therefore, the study of rotating
stall type of nonsteady flow phenomena is one of the important subjects
in aeronautical technology.
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This paper carried out an analytical study on the flow character-
istics under the ﬁorking condition of rotating stall. Using the vor-
tex theory, a vortex system flow model and the flow field computation
method were established under rotating stall conditions. Based on this
computation method, a detalled theoretical calculation of the flow
fields of a low speed rotor and a transonic rotor were carried out and
the computed flow flelds agreed with the actually measured flow field.
This indicated that this flow model and flow field computation method
are reasonable. This paper also contalned an analytical investigation
of oscillograms of the stall characteristic parameters as a function of
time recorded during the onset, development and disappearance period of
rotating stall of a transonic rotor. The following new flow phenomena
worth further investigation are: (1) the "irregular separation” (i.e.,
serious separation of individual blades) phenomenon prior to the onset
of rotating stall and (2) periodical variation of circumferential width
of the stall cellwith time together alcng with the periodical oscilla-
tion of the width of the stall cell in the radial direction of the blade
in the duration in which the stall flow state was varied..

" Received in April 1981 62

I. THE ESTABLISHMENT OF PHYSICAL FLOW MODEL UNDER STALL CONDITIONS
AND THE COMPUTATION EQUATION

In order to further understand the flow characteristics and influ-
encing factors under rotating stall conditions, a flow model capable of
reflecting this type of flow phenomenon characteristic must be estab-
lished. Based on the experimental data obtained under rotating stall
conditions of the abrupt type, we know that under these stall condi-
tions, there exists vortex motion both up and down stream of the blade
array. Therefore, the flow model for this condition founded based on
vortex theory apparently can better reflect the characteristics of this
fype of flow phenomenon than other methods. In an axial compressor,
the axial symmetry of the entire flow fleld 1s destroyed once the
rotating stall phenomenon is produced. If the coordinate system is
fixed in the rotating separation region, then the entire flow fileld is
divided into two completely different diffracted flow regions. In the
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main flow reglon outside the separation region, the diffracted flow and
moment of the flow are basically the same as a certain steady condition.
In the low velocity flow in the separation region, the strong separa-
tion of the flow made the diffracted flow loop moment very small.
Because of the relative motion between the blade array and the separa-
tion cell, therefore, each blade in the blade array must continuously
enter and exit this separation cell sequentially. When each blade
enters and exits the separation cell once, the flow diffraction moment
on the blade must vary once. This variatlon is the source of the perilod-
ical oscillation force on the blade. When the blade enters the separa-
tion cell from one side boundary of the main flow region, the diffraction
flow moment accompanying the blade varies from large to small. There-
fore, 1t forms a vortex flowing from the tall of the blade toward down=
stream of the blade array with diffraction flow moment 1n opposite
direction to that of a blade in the main flow region. This phenomenon
1s similar to that of a peeling vortex at the taill of the wing during
alrcraft landing. When the blade leaves from the other side boundary

of the separation region, the accompanying diffraction flow moment on
the blade varies from small to large, then a vortex begins to flow from
the tall whose direction 1s opposite to that of the diffraction flow
moment on the blade in the malin flow region. This phenomenon is similar
to the formation of an adherent vortex on the airplane wing during “ake-
of " and simultaneously a take-off vortex 1s left behind on the ground.
Because the blades in the blade array must enter and exit from both
sides of the separation regions continuously and sequentially, there-
fore, two stable vortex streets are formed on either side of the separa-~
tion region. 1If the effect of viscosity must be considered, then the
intensity of the two vortical streets downstream from the blade array
will gradually decrease. In this paper, the flow model uses two finite
length constant intensity vortical streets to consider the effect of
viscosity. The relative motion between the low velocity flow (or even
reverse flow) in the separation region and the incoming flow from in
front of the blade array will cause the existance of vortical motion in
the upstream of the blade array (in the upstream vortical street). The
shape of this vortical street 1s related to the size of the separation
region and the flow velocity in the same region. In order to simplify
the flow model and the complexity of the computation, let us use a finite

83

s e lad v ae o A

=t

i

[P Y S S




: T
BRSSP L

MJAME. St auegt st e v s et Juee el S Samh RSN SN SN S miir e astieditt o et S S R R A

extension of the downstream vortical street towards upstream to consi- -

der the effect of vortex in the upstream region. Figure 1 gives the
vortex system flow model established in this work. PFrom this vortex
flow model, it is possible to deduce the following flow computation

equation: =+t W+ Ta
when W =L sh(2xy/t)
te 2t ch(2=y/i) —cos(2nx/t)
W om— r sin (27x/7)
te 2t ch(27y/t) —cos(2xx/1)

in these equations, TI'--intensity of point vortex
t--cascade distance of blade array

L=2xR ]

L=2xR T

Fig.1 A flow model of vortex system in rotating stall condition

Key: 1--T vortex; 2--T blade

(1)

The subscripts u and a represent the components on the x and y-axis,

respectively. Similar symbols apply to whatever follows:

lag/'t
Wiam YW,

im}]

l1g/t

Wiam YW,
i=]
W -l sh(22y/L)
ald 2L ch(2ny/L)—cos(27n,/L)
W.. -t sin(2xy/L)
9 2L ch(2xy/L) —cos(22M,/L)
M= x -
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cy—=X coordinate of a blade in the separation region
L-~circumference of the blade cascade loop
L3O-—nom1nal wildth of the separation region

W su=Ucos(+3) +¥ sc08 b
W =U,sin(x—5) +V,sin

S (3)
Upm i2h 2T (B0

n= ~”
+ o0
V.= hd 2 sinajsinal,
Poam &\ sinalsinal,

d--azimuth angle of the vortex street
y-=-strength of the vortex street

’

Oras Oumn Chay Guey @l and a.. are the geometrical parameters in the
vortex system model as shown in Figure 1.

e
Z (W- +Wz-+ Wu)l

W-."”Sinb“ i=1

L
r . 1 (4)
Z(W;-+Wg¢+W11)I x
Waam =1 Cor 122 |
L " ]

where v--flow velocity in the main flow region
C y-average value of gas inlet axlal velocity of the rotor
na--number of computational polints on the cross-section of
computation
nu--number of computational points on the cross-section of compu-
tation outside the separation region

The detailed computational procedure regarding the two-dimensional

flow field 1s reported in [1]. The velocity field of a transonic rotor
computed based on the above method is shown in Figure 2. 1In order to
verify the accuracy and adequacy of the model, its actual measured
velocity fleld is given in Figure 3. Through the comparison and anal-

ysis of the velocity field, it can be concluded that this model is rea-
sonable.
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Fig.2 The calculated flow field in transonic rotor in rotating stall at & = 13000rpm with mass

cross-section L=27R

flow coefficient Ce=0.263
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Fig.3 The measured flow field in transomic rotor in rotating stall at #=13000cpm with mam

flow coefficient Ec' 0.263
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II. EXPERIMENTAL APPARATUS AND MEASURING EQUIPMENT

The test stand 1s a single or dual level compressor test equipment.
The test stand has a given power of about 2000 horsepower. The given

rotating speed is 22000 rpm. The experimental flow range is 0-20 kg/sec.

The transonic test compressor has a designed rotating speed of

22000 rpm and flow rate at 13.6 kg/sec. The extreme pressure ratio
under design condition is Avl.6. The relative Mach numbers at the tip
and the root of the blade are 1.4 and 0.9 respectively.

In order to measure the steady state parameters, such as the total
statlc pressure at the inlet and outlet of the rotor and the flow direct-
ion at the outlet of the rotor, a six-point pressure probe was 1installed
on the cross-section of the inlet and the outlet. In addition, four
static »ressure bholes were placed on the inner and outer walls at the
cross-sectlion of the inlet and outlet. A single-point total static
pressure combination probe which was capable of tracling the direction
of the flow was Iinstalled on the cross-section of the outlet of the rotor.
The flow of the rotor was measured through the inlet flow tube. The
steady state parameters were acquired and recorded by a model XJj-100 auto-
matic cycling measuring instrument. Some of the low pressure parameters
were obtained directly from water displacement.

Dynamle parameters under stall conditions--the measurements of flow
velocity and total gas pressure, were done by using model 55M hot fila-
ment wind velocity meter of the DISA/CTA series and the Chinese LDY 6-4
pressure pulser as 1ts sensor. The dynamic parameters were acquired
and recorded using the TEAC/R510 magnetic data recorder for the entire
duration. During the whole experiment, a RS-1 oscilloscope was used to
observe and monitor the dynamic parameters on site. The measurements
of dynamic parameters and the treatment of data were reported in [2].

III. EXPERIMENTAL RESULTS AND ANALYSIS

1. The actual measured flow fleld and 1ts analysis of a
transonic rotor under rotating stall condition
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The actual measured basic element level flow field at the tip of
the blade for a transonic rotor is shown in Figure 3 under the rotating
stall condition. This flow field was measured when the transonlc rotor
was at 13000 rpm with a flow coefficient C.=0.263. From the flow field
diagram, it is clearly shown that there are reverse flow regions both
on the front and rear cross-sections of the rotor. The existence of
the reverse flow areas would drive the downstream gas which had already
been heated and pressured by the rotor back to the upstream reglon.

This is the major reason for the melting of the rotor blade. The higher
the pressure increase ratio 1s, the shorter the time required to melt
the blade due tb the reversed flow. It is even possible to create

this type of destructive phenomenon in several tens of seconds. For

a rotor with axial gas inlets, when reverse flow occurs, there exists
vortex motion in the upstream region of the rotor. By comparing this
flow field diagram with that reported in [3] for an actual measured flow
field of a low velocity rotor, it can be concluded that the downstream
reverse flow region of the transonic rotor dissipates faster than that
of a low velocity rotor. 1In the flow fleld of a transonic rotor, the
reverse flow region downstream from the rotor disappears very rapidly.
On the N cross-section 170 mm from the rotor, reverse flow cell ceased
to exist. For low veloclty rotors the downstream reverse flow region
shrinks slowly. It extends to the exit channel without dissipating com-
pletely. This situatlion indicates that the vortex intensity of the
transonic rotor decreases more drastically than that of the low velo-
city rotor. Under rotating stall conditions of the transonic rotor,

the fact such that vortical motion exists both upstream and downstream
from the rotor and the vortex intensity downstream from the rotor
decreases rapidly has significant meaning to the correction and improve-
ment of the theoretical flow model.

2. The process and analysis of the onset, development and
disappearance of rotating stall

(1) Experimental results and analysis at 8000 rpm

The pressure signal osclllograms from steady state to the transi-
tion period of stall condition are shown in Figure 4. These probes
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Fig.4 Tbe pressure signal oscillograms at »=8000rpm in stall condition and in blade irreguiar

separatiop condition

-

Key: l--time signal; 2--pressure signal (1); 3--pressure signal (2);

fe-flow signal; 5--rotating speed signal

were installed at the blade tip about 10 mm away from the outer wheel
shell. PFrom this figure, it can be observed that in the transition
period from steady state to stall conditlon the average value of the
pressure signal remained unchanged. However, in the transition period,
the pulse amplitude of the pressure signal increased signifidantly.

This flow phenomenon which showed basically the same average pressure
before goling into rotating stall as in steady state together with signi-
ficant increase in pulse amplitude was called "irregular separation"

in [2]. The enlarged "irregular separation" pressure oscillograms are
shown in Figure 5. From this figure, we found that the pressure oscill-
ogram contained 17 pulses in the period of each revolution. The 17
pulses have the same cycle period as that of the rotor. Because there

were 17 blades on the rotor, therefore, it 1is convincing to say that 66

"irregular separation" 1is basically a flow phenomenon of severe separa-
tion on each blade before the rotor enters rotating stall conditions.
Because the blade at the tip 1s thin and curved in shape for a transonic
rotor, this further explained the conclusion obtalned based on low velo-
city rotor studies that a relatively long period of "irregular separation"
is frequently found for basic elements with small curvature angles.

The same conclusion applies to transonic rotors.
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Figure 5. The pressure
signal oscillograms at
n = 8000 rpm in blade m

irregular separation
conditions

Key: 1l--time signal; 2--pressure
signal (1); 3--pressure
signal (2); 4--flow signal;
5--rotating speed slgnal
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1
From the "irregular separation" condition to the rotating stall #
condition, the average value of the pressure signal decreased signifi- "4

cantly and showed a two zone rotating stall phenomenon. Its rotating

separation - "Eeparation/%tor is 0.74. Continuing to save the

flow, the separation reglon changes from 2 to 1, however, usepanmﬁpn -

remained to be 0.74. This condition continued until the exhaust flow
saving valve was completely shut. At this rotating speed, the compressor

velocity u

never had any coughing vibration.

(2) Experimental results and analysis at 13000 rpm

Two pressure probes were also placed at the tip of the blade in a
similar manner. When the flow valve was closed to enter the stall trans- |
ition period, the longitudinal pulse amplitude of the pressure oscillo-
grams began to increase significantly to produce the "irregular separa-
tion" phenomenon of severe separation on each blade (see the first seg- .
ment of the oscillograms in Figure 6). Immediately before rotating 67 N
stall occurred, a new flow phenomenon involving the periodical variation
of the average value of the pulse amplitude existed (see the second seg-
ment of the oscillograms in Figure 6). Because its variation period
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Fig.6 The pressure signal o;cﬁloms ;t LE 13060ri:m in blade irregular separation conditios and
in rotating stall cosdition '
1—Pressure signal oscillogram in blade irregular separation condition with similar mean value of "4
ampiitudey )
2—~Pressure signal oscillogram in blade irregular separation with amplitude mean value varying
periodicaily,
3—Pressure signsl oscillogram in rotating stall condition. ¥

Ry ST

Key: 1l--time sigmal; 2--pressure signal (l); 3--pressure signal (2); -]
b--flow signal; 5--rotating speed signal 3

colncided with that of the rotation, therefore, it was not rotating b
stall. It still was severe separation in the channels of each blade. f@
Furthermore, it must be explained that the flow of gas through the 1&
channels of each blade is no longer the same. The appearance of this l;
phenomenon is the sign that rotating stall condition will soon bhappen b
(see the transition between the second and the third segments of the
oscillograms in Figure 6). This flow phenomenon which occurs immed-
iately prior to rotating stall has never been recorded in the literature.
Its pressure variation oscillogram is shown 1in Figure‘G.

A

L S
L‘A"A‘_AAA_‘

Continuing to cut the flow. since the appearance of the "irregular
separation" phenomenon, it then went into a steady single zone stall
condition, an alternating single and double zone variable condition and
a steady double zone condition sequentially. 1In the process of leaving :
the stall condition, the transition from double zone to single zone ,f
condition and the steady single zone condition appeared in that order. R
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Fig.7 The oscillograms measured by two bot-wire anemometer probes in transient process of
rotating stall at 8=13000rpm
The upper ope——the probe located at the root of the blades
The lower ope—the probe located at the tip of the blade.

Key: 1--time signal; 2--hot-wire anemometer signal (1); 3-~hot-wire
anemometer signal (2); 4--flow signal; 5--rotating speed signal
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Fig.8 The oscillograms measured by two pressure transducers in transient process of rotating stall at
s =13000rpm (transducers located at the tip of the blade)

Key: 1l--time signal; 2--pressure signal (1); 3--pressure signal (2);
l--flow signal; S--rotating speed signal

Finally, it excited the steady single zone stall condition to a steady
state condition. 1In the stall condition described above, the rotating
speed %mparathmm in the separation region was about 0.7.

In the transitlon state under which the stall flow state varied,
the oscillograms measured by the hot-wire anemometer probes (Figure 7)
and the two pressure transducers (Figure 8) were recorded. The two hot-
wire anemometer probes used to measure the two oscillograms in Figure 7
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were installed at the blade tip and blade root of the rotor respectively.
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The angle between them 1s 90°. The two pressure transducers used to
measure the two oscillograms in Figure 8 were installed at the roots

of the blades. Their angle was also 90°. The four probes were distri-
buted on the same measurement cross-section. From Figure 8, it is

clear that the two oscillograms are basically the same in shape. There
was only a small phase difference in the transverse position of the
oscillogram. It 1s apparent that the transverse distance was caused by
the 90° angle between the two probes. Now we analyze the variation

of the two anemometer probe oscillograms. The widths of the sebaration
regions at the tip and the root of the blade were varied periodically.
Their variation period is much higher than that of the rotor rotation.
If the two oscillograms were moved laterally by half the period of the
variation of the width of a separation region, we can see that when

the width of the separation region at the root changed from narrow to
wide, the width of the separatlon region at the tip changed from wide

to narrow and the veloclty average from small to large. This 1s true for
vice versa. Thus, when the width of the separation region at the root
reached the widest and narrowest values, the separation region width at
the blade tip happened to be the narrowest and the widest, respectively.
Combining the two oscillograms obtained using two hot-wire anemometer
probes at different blade heights in Figure 7 and the two oscillograms
obtained using the two pressure transducers placed at the tip in Figure
8 for analysis, it 1is clear that in the transition state the width of the
separation regilon not only had periodical variation along the circumfer-
ential direction but also had periodical vibration along the radial
direction of the blade. The circumferential and radial frequencies

are the same at about 18 Hz. As long as the stall state begins to
change, 1t is possible to create this effect. It appears that this
phenomenon indicates that under rotating stall conditions, although the
total flow across a certaln cross-section of the rotor is invariant,

yet the flow of elementsmay change with time. The above flow phenomenon
which occurred in transonic rotorswith larger blade twist along the
blade helght direction has not been reported in the literature both in
China as well as abroad. Its discovery and further verification will
provide a new and valuable stimulation in the area of blade stress
analysis. It also gave a new understanding of unsteady flow structure..
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Fig.9 The oscillograms measured by two hot-wire anemometer probes in traasient process of rotatiax
stail at #=15000rpm R
The upper one——the probe located at the middle of tbe blades
The lower one the probe located at the root of the blade.

Key: 1--time signal; 2--hot-wire anemometer probe signal (1);
3=-=hot-wire anemometer probe signal (2); U4--flow signal;
5--rotating speed signal

(3) Experimental results and analysis at 15000 rpm

In the 15000 rpm experiments, with the exception of placing a hot-
wire anemometer probe at the center of the blade instead of at the top
of the blade, the remaining measuring positions were unchanged. The
entlire experimental process and the conclusions obtained from the tests
are simlilar to those of 13000 rpm. Due to the space limitation, .they
will not be described in detall. 1In this section, only the velocity
oscillograms obtained from two hot-wire anemometer probes in the stall
state variation process are given (see Figure 9).

CONCLUSIONS

Through the study of the transonic rotor rotating stall phenomenon
in this paper, the following conclusions can be obtained:

1. The vortex system flow model established on the basis of the
vortex theory is reasonable for rotating stall conditions. The two
dimensional flow flelds obtained based on model computaticn agree with
the measured flow fileld.
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2. From the measured flow field obtalned experimentally under
rotating stall condtiions for transonic rotors, it is clear that re=
verse flow reglon exists both upstream and downstream from the rotor.
This phenomenon indicates that not only 1s there vortical motion down-
stream from the rotor, but also upstream from the rotor. The down-
stream reverse flow region of the transonic rotor disappears faster
than that of the low speed rotor. This indicates that the dissipation
of the vortex intensity is much stronger for transonlic rotors than that
for low speed rotors. '

3. In the blade tip area of a transonic rotor, because the shape
of the blade is flat, strailght, pointed and tbhin, the "irregular separa-
tion"-phenomenon also occurs in these basic elements. This indicates
that the conclusion obtalned in the study of low speed rotors that "a
relatively long period of "irregular separation" frequently will occur
for some basic elements with smaller blade curvature angle before going
into rotating stall condition", also applies to transonic rotors.

4. 1In the rotating stall effect occurred at a non-designed rotat-
ing speed for a transonic rotor, the relative rotating velocity ﬁsep_
aration =‘%emuatﬂx/9hmor remains constant which is about 70% of that
of the rotor rotating speed. Therefore, the transmitting velocity of
the blade array relative to the separation region is 30% of that of
rotor rotating speed. This value 1s far less than the transmitting velo-
city of the separation region (50-60% of rotor rotating speed) for low
speed rotors. This may probably be due to the effect of compressibility
on the transmitting velocity of the blade array corresponding to the

separation region which is significantly increased for transonic rotors.

5. TFor a transonic rotor undercertain non-designed rotating speed
and when the flow state of stall varies, the circumferential width will
vary periodically with time. Simultaneously, it also osclllates period-
ically along the radial direction with the flow. Its periodical varia-
tion frequency is 15-18 cycle/sec. The newly observed flow phenomenon,
after further verification, will provide a new stimulating source to the
blade stress analysis and will give a new understanding on the nonsteady
flow structure.
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FLOW MECHANISM AND EXPERIMENTAL
INVESTIGATION OF ROTATING STALL

IN TRANSONIC COMPRESSORS
Lu Yajun and Zhang Shunlin
(Beijing Insiiiuie of Aerosaulics and _Xdronmdics)

Abstract

The flow characteristics of the rotating stall in compressors are studied.
A flow model for rotating stall in axial compressors and its theoretical calcu—
lation method are developed on the basis of the vortex theory. By this method
_ a detailed theoretical calculation is completed for a two-dimensional flow field
in a transomic rotor at rotating stall. The flow field obtained is inm good
agreement with that measured from ?xperiments. This shows that the flow
model and its calculation method are reasonable. ‘
The oscillograms of time-varying stall characteristic parameters recorded
in the onset, grqwth and cessation processes of rotating stall in transosic
ortor have been analyzed and studied. Some new flow phenomena deserving of
further investigation have been discovered as follows; 1)” irregular separation”,

i. e. serious seperation of individual blades, often preceded the onset of rotating
stall in compressors with very small blade—camber angles 2) periodical vari-

ation of the circumferential width of the stall cell with time and accompany-
ing periodical oscillation-of the width of the stall cell in the radial direction
of the blade, which both occuied:ixi'transient“ process of the -rotating stall.
The circumferential and -radial oscillation frequencies were the same, about 15
to 18 Hz.

The discovered phenomena indicate that in stress analysis of the blade a

corresponding exciting force must be considered. It seems that this discovery
will be helpful to understandiag of unsteady flow structure in transomic rotors.
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A BRIEF DESCRIPTION OF THE FIRST AERONAUTIC ENGINE SYSTEM,
STRENGTH VIBRATION CONFERENCE 71

The Chinese Aeronautics Society held the first Engine Structure,
Strength and Vibration Conference in Canton on December 10-15, 1981.
There were 98 people from 35 units attending. The conference presented
57 papers with 52 papers collected into a symposium. It was published

before the meeting. The meeting was divided into structure and strength/ -

vibrations for paper presentations and discussions. Thils meeting was
well prepared and arranged. It pald great attentlon to actual practice
with many materials and an academic atmosphere. It should promote
future research. This meeting reflected new progress 1n the studiles

of structure, strength, and vibration of engines in recent years.

The finite element method was wildely used in the study of engine
structural strength and vibration analysis. 1In the meeting, not only
the analytical procedures of the major components of the engine were
proposed, but also some basic methods applicable to engine character-
istics were presented: for example, a new method of structural auto-
matic separation, the finite element analysis of the three dimensional
elasticity problem, the turbine elasticity problem, the transition
elements for analysis of solid-shell combination structure and tensile
plate-plane beam combination structure, and the automatic formation
of geometrlic shapes of turbiline wheels, etec.

The papers in the areas of fatigue and crack of structural compo-
nents indicated that research in this field 1s becoming increasingly
important and a good foundation was lald. The papers involved the
determination of aeronautical engine cyclic load, the prediction and
experimental evaluation of 1life of major components, and the analysils of
and experiments on turbine wheel cracks, etc.

The analysls of free and forced vibrations of periodic, on-board
structures, discussions on the experimental methods to determine
rotor critical rotating veloclity, the analysis of the combined
wheel-blade system model using group theory, the experimental study of
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The blade-wheel system coupled vibration, the analysis of the effect
of gas 1nlet 1rregularity vibration on compressor blade, etc., repre-
sented a new subject and characteristics of engine vibration research
in recent years.

There were many reports on the analysis and experimental study of
aerodynamic characteristices of the rotor-support system as well.
Especlally good results on elastic support, compressible hydraulic
resistors and uncoordinated motion of the rotor were obtained.

In the meeting, many suggestions were made on future academic
activities. Many people believed that schools, institutes and
factorles should organize to concentrate thelr efforts on overcoming
difficulties in order to produce fruitful results quickly, which
would also demonstrate the superlority of the socialist principle
and save manpower, as well as materials, in order to change the
poor image of englnes 1in the areas of structure, strength and
vibration. Certaln key problems were discussed in detall. Finally,
all attendants recommended that the next Engine Structure, Strength
and Vibration Conference be held in 1983.
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A KIND OF TRANSITION FINITE ELEMENT FOR ANALYSIS OF SOLID-SHELL
OR TENSILE PLATE--PLANE BEAM COMBINED STRUCTURE

Nanhua Power Plant Institute, Yin Zeyong, Yin Jing and Ren Peizheng
ABSTRACT

A kind of transition element was established in this paper. When
coordinated with standard isoparametric solid (or plane) elements and
superparametric shell (or plane beam) elements of the same order, it
can be used to treat the non-standard joint combined structure such as
solid-shell or tensile plate-plane beam structures. The procedure to
establish this kind of transition element was described. The formula
of quadratic transition element was presented. The numerical results
obtained showed that this kind of transition finite elent 1s very
effective.

I. INTRODUCTION

The engines used in aeronautical applications have many important
parts and components which are composed of two parts such as solid and
shell (tensile plate) or axisymmetric solid and axisymmetric shell (axi-
symmetric tensile plate). Some of these can be treated as a tensile
plate-plane beam combined structure on the same plane after simplifica-
tion. Examples are eccentric turbine, convex shoulder blade, etc.

When the finite element method is used for the analysis of stress and

. vibration of these structures, if solid or plane elements are used for
the entire combined structure, then not only the data preparation and
computational load are increased but also possibly some symptoms are
brought into the equations to be solved [1].

“L'”" innaath

If s0lld element or plane elements are used for the solid portion
or tensile plate portion of combined structures, and shell elements or
plane beam elements are used for the shell portions as plane beam por-
tion, then a coordinative distortion problem will appear between the two
kinds of elements. In order to solve thils coordinative problem, primary
and accessory variable {2,3,4] combination element [5,6] penalty
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element (4] and transition element [7,8] methods can be used.

The primary and accessory variable method and the penalty method
3 are effective means to process non-standard Joint combined structures.
' However, because of the need to distinguish the displacement vector of 3
the primary and accessory nodes and to have thée accessory node dis- )

placement vector not to appear in the equations, the program design of L
the primary/accessory variable method is relatively complicated. As )
for the penalty element method, the choice of the numerical value of the ,
penalty matrix has a certain degree of difficulty. In thils paper, a f‘
kind of transition element is established which is different from the

ones described in [7,8]. This kind of transition element of any order

can be used coordinatively with the standard isoparametric solid (or

plane) element and superparametric shell (or plane beam) elément of the 5
same order. With respect to the program of the widely used standard iso-
parametric solid (or plane) element and superparametric shell (or plane
beam) element, it is possible to add the kind of transition element

3 - - .
Ak A e .

establlished in this paper in order to facilitate the analysis of non-
standard joint combined structures such as solid-shell and tensile plate- B
plane beam. _J
received in May 1981 !,
II. ARRANGEMENT OF NODES, GEOMETRIC SHAPE AND DISTRIBUTION 73 -
OF DISPLACEMENT o
)

The basic procedure to establish this kind of transition element
can be described in the following: On the interface (or boundary line)
of a standard isoparametric solid (or plane) element (for a three- :%
dimensional solid element, sometimes on an edge), the original) nodes of 4
the solid (or plane) element are eliminated and replaced by the corres-
ponding nodes of a superparametric (or plane beam) element of the same
order. As for the remaining nodes of the solid (or plane) element, the
shape functions are 1dentical to the corresponding shape functions of
standard isuparametric solid (or plane) element. As for the shell (or
plane beam) element nodes, the shape functions are the same as the cor-
responding ones of the standard parametric shell (or plane beam)
element.

t®
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Obviously, the shape function of this kind of transition element
satisfies the requirement that its value is 1 at one node and 0 at ahy
other node. 1Its distribution on the interface (or boundary line) nodes
of the superparametric shell (or plane beam) element distortedly coor-
dinates with the standard superparametric element of the same order.

As for the corresponding interface (or boundary line) which contains
nodes of an isoparametric solid (or plane) element alone, it coordinates
distortedly with the standard isoparametric solid (or plane) element of
the same order. Similarly, the two neighborning transition elements

are also coordinatively distorted. From the following equation, this
coordination can be verified. 1In addition, for this kind of trénsition
element, besides arranging the interface (or boundary line) of the shell
(or plane beam) element nodes, the displacement inside the element does
not agree with the distortion assumption of the shell (or plane beam).
In practice, for solid-shell or tensile plate-plane beam comblined struc-
tures, with respect to the shell (or plane beam) portion near the joint
the ideal shell (or plane beam) distortion assumption should also not be
used . Thus, the established plane transition element should be in 2
plane stress or plane straln state, the axisymmetric transition element
should be in axysymmetric solid stress state and the three-dimensional
solid transition element should be in a three-dimensional stress state.
From the actual equation, 1t is possible to verify that the displace-
ment distributlon of thils kind of transition element can realize a con-
stant strain state.

The following 1s an example using a quadratic transition element
to obtain the expressions of the gecmetric shape and displacement dis-
tribution.

l. Quadratic axisymmetric transition ring element and
quadratic plane transition element

Here only the former is discussed. The relevant expressions for
the latter are identical. The matching quadratic axisymmetric solid
isoparametric elements of the quadratic axlisymmetric transition ring
element are given in [9]. The matching quadratic axisymmetric super-
parametric elements can be established by initiating the method in [10].
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However, we used a slightly different method direetly [11]. Therefore,
the total coordinates (r,z) and displacement (u,v) of the local coor-
dinate point (&,n) in the axisymmetric transition ring element can be
determined based on the following equations (see Figure 1).

[l Zhgel} | o

(he et Nt H

where P1s 295 Tys 245 Uy Vi, Uy, Vy are the coordinate components and
displacement components of the corresponding nodes. ay is the other dis~
placement component of node 1. The definitions of a, ¢l and tl are
all shown in Figure 1. The actual expressions of the shape functions

are
N,=~—;—n(n- 1), N,-—;—( [—n)(1+8),

CN=ta+na+smeen-n,
Ne=—-(1=8(1+ M), Ny=—= (1= A+ M=t +7-1),

P (2)
1 24 ¢
.V.=—-2—~(l—'1 (1 —238) |

2. Quadratic three-dimensional transition element

The quadratic three-dimensional solid element to be matched with
this kind of transition element can be obtained from [12]. The match-
ing quadratic superparametric shell elements can be found in [10].
Therefore, the total coordinates (x,y,z) and displacement (u,v,w) of a
local coordinate point (£, n, Z) in thils type of transition element
can be determined from the following equation (see Figure 2):

* 12 *i 15 * 15 _
yl =) N, {y ¢ + 2 NySomp + N;—%‘Vsl 1 (3)
25 i1 2 i=1s 2, je1s !\
(
u 12 Y 18 U 15 a;) |
v -ZN; v, } + Z Ny vy p + 2 N;—g—t;[i,;—iul{ } |
w)] 9 w,) P ® w,) 173 B J
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III. STIFFNESS MATRIX, MASS MATRIX AND LOAD VECTOR

PP

The general expression of the stiffness matrix [k] for transition =
element is still [12] =
Chl=|_ C(BI(DI(B)V e

JV (6) :‘1

- ‘ 3

where [D] is the elasticity matrix of the material which can be chosen "
based on the stress condition of the transition element. (B] is the -
strain node displacement matrix. The following 1s the actual express- 3
ion corresponding to the quadratic transition element. ’ &j
1. Quadratic axisymmetric transition ring element and guadratic 12
plane transition element B

For the quadratic axisymmetric transitlon ring element, here we F:

use the following equations to define its strain vector {e} and node }
. splacement vector {§}: . B
{s)=m(sy & Yrm &) (7)

=(a, v, & Ugy s ¥ v)” y i

{8} =(uy v, By uy Uy e Vs, (8) L

Under the conditions, the following system of equations exist: o
v N R

N, —‘—M‘P + al ! N —l—sm@ + ! ] .

r oz 2 '22 £ | ]

% 9k oN oN aN £ V

(/)= w on |= fn-(r,-i-a—z‘-—eosw) z‘_,z Lp, (z,+&—é‘~smwl) “1
FLFIY 1

+-Ez ® J

-[ 1 Cu] (9) “

21 sz -’1
(3= [ 13 u]-[ 1 l:] (10) :

l J l Cgl Cu A!l Al :1

E

i

where [J] 1s the "Jakobi" matrix, |J| and [J1°! are the determinant
and inverse of [J] respectively.
(11)

where (B)lm= ((BJ (BsJ (B,J (84] (B'] (B.]]

A‘J-"":
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- where =» ¥» ¥ and w» vy w, are the coordinate. components and displace-
. 1
g ment components of node 1, respectively; (x, y, 2)'= —?-Uku i n)T

+(xp ¥ 20 ﬁ)ttom)is the coordinate component oi' node

- T _ T
L:.:; Fom W Vo Vared'= (Xi» Yi» 21D top (x5 v 2 bottom 18 the normal
: vector at node j; 1t =iy, 15 the thlickness at node J. 313 and GZJ are

determined based on the following two equations, respectively:

Uy _ Usss
= 4 I XVs; S _ Vi _ VIXVH
o,={p -__.LL_s__,_ L, U™ { Uy, = = e M
1 Ay r—VUI ‘ x _V ’» Y2 shy

top

(J.;

Y oo \ Vet~ VXVl (4)
Uyps . s - T
1f v3J and T = (1,0 0) are parallel, then J = (0,1,0)" is used to
: replace I. Uy, V4 Wy, 0y, B, are 5 displacement components of node j -
2i where oy and BJ are the rotating angles of V3J around 623 and Vlj res- j@ﬁ
. pectively. The shape functlon expressions are: L
"§ Ve

N.~=—%—(1 —E)(1 +M) (1 +8,), (i =9, 10, 11, 12)

N,-‘—;—(l FED(1+M)(1 +E)(E+M+t,— 2), (i =1, 2, 3, 4)]
{

1 .
Nem ) (1= +L O+, (i =5 6) T
o
N,= ~:- (1 =801 +5)(1+7,), (i=7 8) :
Nj= %‘( 1+5)(1 +7)(¢+0,—- 1), (=13, 15) | ".“"‘“'!-1
1 -
Ny=——(1+8)(1 -, (i=14) } g
=Lt Ey=tt Ny=NM, Nymnm, {, =L, 7 - o ‘
Ly .
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( aN aN . 3
Au_a""“ 0 -(Alt an 5 +44"N| 2 s“lwl
oN N, i
0 An?"" (An M £ +4,N, )—-2~cos¢,
aN aN v f, .
(B,)= Au‘ﬁ“ Au—an—' —(Aua;nl E+4,V, )—-é—sm‘P, (12)
+ Au%“' 13 +A||N1)‘%L cos?,
_ : E,,L 0 -LV;‘-E ‘2‘ sin®, )
aN,; aN )
(A-u ai +Ax;"‘a—ﬂ_" 0
0 A, "fg’ + Auy "g]’
[B;J==] N N N N (3 =2, 3 4 5, 6)
aN,; d. ) .
Anpt+Awint AT+ AnTy (13)
B

If one wants to obtain the relevant eduétions of the quadratic plane
transition element, the fourth row of the matrices on the right hand
of equations (7), (12) and (13) should be eliminated.

2. Quadratic three-dimensional transition element

Here the following equations are used to define the strain vector
{e} and node displacement {8} of the element:
{e)m(tn 25 Co Yop Yo Yu)” (14)
{8) = Cuy, 0y, Wy, ~*tysy Uyg Wiy Uyas Vysy Wygy Cygy Bray ** 818y Vsgs W15 T ﬂu)r (15)
Under the above conditions, the following equation system exists:
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Ill Jll Jl. All Al. Al.
' (J)'= '—}T [-’n Jn Iu ] [Au Ay Ay an
:_i- : Ju Iu I Ay A Ay
. where the meaning of [J), |J| and [J1"! are the sawe as before. ¥,, is the algebraic
- rémaining term of ¢ e 1
J (B)=((8), =, (B} asy’
where l
! \ {
- (4., ‘f;" +4, 500 "1:’ + 4,2 ‘,’Z’ A 0 I
. - N, o, N,
t 0 Ay—3g— of + A4, pt n + Ay~ ra 0 | ‘
0 0 Ay “l:’ + Ay~ ‘N‘ o= Ay “IZI !
(Bi)m= . !
A AR e A A, g g 0
0 A, “l%l‘ + 4y ‘:: + AhT.N' Au"% +4,,—* .N' + A= ‘x'
O 0 A, g a2 4,20 |
' (i =1, =y 12) a9)
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Similarly, based on the general expression (1], the mass matrix 80
and load vector of the transltion element can be obtailned. It is not
discussed 1in detall.

IV. EXAMPLES

Due to the limitation of space, here we only give two exam-
ples to show the accuracy and application of this kind of transition
element. The analyzed combined structures have unit thickness and were
under plane stress situation.

1. Transverse force exerted on the end of staircase-
shaped cantilever beam

The data of this example are shown in Figure 3(a). The element
subdivisions are shown in Figure 4(a) and (b) where (a) used quadratic
plane element, plane transition element and plane beam element, and (b)
used quadratic plane beam element only. The deflections of line AB
calculated using both subdivisions and its analytical solution [13] are
all shown in Figure 5.

2. Plane fork structures with two concentrated forces

The data of this example are shown in Figure 3(b). Using symmetry,
only half of the structure is examined. In this case we can no longer
use plane beam elements alone to carry out the analysis. However, the
method involving the use of transition elements as shown in Figure 4(a)
1s still feasible. The calculated deflections of line AB are also
shown in Figure 5. Figure 6 shows the horizontal displacements of
some cross-sections.
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1--20 quadratic plane elements; 2--one quadratic transition
element; 3--14 quadratic plane beam element distributed evenly;
J—-four quadratic plane beam element distrilbuted evenly;
S5--quadratic plane beam element; 6--14 quadratic plane beam
element distributed even y; 7--5 quadratic plane beam element
distributed evenly; 8--unit:cm
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Fig. 5 Deflections of lins—4B i specimens 1 and 2

fig 6
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Fig. B ) Horizoutal du;i‘um;; ;(— me s;etiou in specimen 2

l--analytical solution of example 3; 2--example 3 method (a);
3--example 3 method (b); 4--example &
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A KIND OF TRANSITION FINITE ELEMENT FOR
ANALYSIS OF SOLID-SHELL OR TENSILE PLATE-
PLANE BEAM COMBINED STRUCTURES

Yin Zeyong, Yin Jing, Ren Peizhen_g

(Nanhua Powerplawi Institule)
Abstract

:‘ A kind of transition finite element is dcveloped. In coordinative combina-
tion with stundard iso—parametric solid (or plane) elements and super~parame~
tric shell (or plane beam) elements of the same order, this kind of transition
element can be used to deal with non-standard joint combined structures such
"3 as solid-shell or tensile plate-plane beam structures.

o The procedure to develop this kind of tramsition element is as follows.
‘ On an interface or an edge of a standard iso-parametric solid elemeat or on
a boundary line of a standard iso-parametric plane element, the corresponding
nodes of a super—parametric shell (or plane beam) element of the same order
are placed instead of the nodes of the original solid (or plane) element. The
shape functions for remained solid (or plane) element type nodes are the same
as the corresponding ones for a standard iso-parametric solid (or plane)
element. As regards shell (or plane beam) element type nodes the same shape
functions are adopted as for a standard super-parametric shell(or plane beam)

element.
The formulation of equations for fhe quadratic transition element is pre-

sented in detail.
The numerical results obtained have shown that this kind of tramsition

finite element is very effective,
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PATTERNS OF MONOPULSE ARRAYS WITH TRIANGULAR
AMPLITUDE DISTRIBUTION

Beijing Institute of Aeronautics and Astronautics, Liu Shanwei

A BSTRACT

Thls paper dlscuses the sum and difference pattern function of 83
monopulse arrays of equally spaced discrete elements. The excitation
amplitudes include uniform, triangular and V shaped distributions. The

r,_‘.
1
<:<
9
5

compact form of array factor expression(4),S(z)=F(z)—G(z) has been

obtained by other people using either exact or truncated Z-transform.
With the ald of equation (8), and sometimes taking the shifting theorem ¥
into account, S(z) can be found simply by the unilateral Z-transform i;

without considering whether the envelope function 1is symmetrical or

asymmetrical. A numerlical example was also glven. A study was carried
out with respect to the sum pattern. In the major region, the calcul- ;
ated results agreed very well with the experimental data. The differ- ,i
ence pattern has also been verified experimentally. F

I. Z-TRANSFORM AND ARRAY FUNCTION

v oo .
FEY 4 PRI LI WL LR

In the early 1960's, D. K. Cheng and M. T. Ma for the first time
successfully appllied the Z-transform for treating the time-space prob-
lems to the pulse-~-data system in the analysis of discrete array patterns
and expanded the applications of Z-transform theory. Several relevant
papers were published later [2,3,4]. In this section, the derivation
of array function 1s further simplifiled.

y -

And Al i d

As 1s commonly known, the llnear array factor of equally spaced )

linearly varying excitatlon phase radiation elements can be written as: "
”=-1 s-1 .

S= 3 LexpCjikd(cos § —cosd))= D\ [z (1)

im0 i=0
2 mexp(—ju) (2) )
u = jd(cos § —coaby) (3) B
where g =21/A (A 1s the wavelength in free space ); d is the distance -
between neighboring radlation elements; j=v—1, 8 1s the angle from
the linear array axis, eo is the maximum radiation direction;

U W Y
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Li= fGd), (i=0, 1, = #=1) 49 the excitation amplitude; n is the
total number of radiation elements; f(¢) 1s the envelope function
of excitation amplitude.

In equation (1) there are n terms which 1s also called an array
polynominal. It can be rewritten as:

s-~1

S(z)- 2 f(l'd)z" (ua)
i=0

where = .
F(2)= ) f (id)z'=ZCf (L))
i=o (5)

received in January 1981
G(s)=¥ fGd)z"=Z(f (LIU(L —nd)) (6)
1, L >xd

U(t—-d)-{
0, t<ad (7)

F(z) and G(z) are the Z-transforms of two functions and U({ —sd) is the
shifted unit-step function of displacement. Because the exponent
(n-1) of T in equation (4a) is a finite number, therefore, S(z) 1is
called the finite Z transform of £(Z)

The ordinary Z transform of f(g) 1n equation (4v) is F(z) which
is easy to locate in the theory and tables introduced in ordinary
reference books [5,6]. Therefore, the key to finding S(z) is to obtailn
G(z). It can be proved that when (=20 G(z) has the following relation:

G(2)=ZCf (LIU(L =nd))=z"Z(f (L +nd)) (8)

Thus, it 1s possible to obtain the expression G(z) from equation (8).
It 1s equal to the Z-transform of the function f({ +nd) multiplied by
z~". This physical meaning of ejuation (8) 1s obvious which 1is the Z-
transform of the functlonf({ +sd)after a displacement of nd. Therefore,
it 1s possible to conveniently obtain G(z) using the unilateral Z-trans-

form and shifting theorem.
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II. SUM AND DIFFERENCE PATTERNS OF TRIANGULAR
AMPLITUDE EXCITATION ARRAY

The distribution of the triangular amplitude excitation is shown
in Figure 1. Figure 1(a) is sum excitation, and Figure 1l(b) is differ-
ence excltation. The units are distributed evenly on the ¢ axls at a
distance d. We assumed the total number of element n is even, the
array function is obtained using equations (4)-(8). 85
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Lad
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O 2 a2 (xd) b
dl“- _"z -.1
8 =-2
3 7 T -
" § 5 I
y - : Fig.1 Triagular amplitude distribution for even ® 1

Ca) sum; (b) difference.

The truncated Z transform of the left half of the array function
in Figure 1 is SL(z) and the truncated Z-transform of the right half
from ¢ 4+(m—-1)d is SR(z), i.e.,
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_dz[nzzz"%*l__'zl_z'_!z.—...z-(-u]/(z_l)x (10)

S,_(z)+$.(z_)-$,(z) is the sum excitatlon array function;
S(2)=Se(2)=S4( 2_) is the difference array function. By substituting
equations (9) and (10) into them and after rearranging, we get
Se(2)=dz(1 =2 (1 =¥ /(2 -1)* (11)
Sa(z)=dz(1 +(n=1)(1 = 2)z"*—2"*")/(z2-1)* (12)

®)

Fig.2 Triangular 1mplitude distribution superimposed om umiform hasis
‘ (a) sum (b) difference.

116

o . VS S Y WP G- L om A A




Using a similar method, we can obtain the array function of an

even number radiation element linear array spaced by d as shown in 86
FPigure 2 when the excltation amplitudes are uniform and triangular
addition.

In the case of sum excitation (Figure 2a)

1—2z" ad(1 =2z"2)(] =z =0n)
S’(2)=z[ =1 T =1 ] (13)

MASMS - BOMHGAMN ™™ S

In the case of difference excitation (Figure 2b)

— a2y 2 - n/2¢) _ ,°®/3 m]__ 1
S‘(z)'z[(lz—z;) __ad((n 1)(Z(z—1z)=)+z ) ]

(14)

It 1s obvious that the maximum value of equation (13) occurs at

za]@Pu-O),
. =) _ . f, L0dn=2)
Sm(2)= S (D =limS: ()= Gicpyr=# ) (15)
where Ql and Q2 represent the numerator and denominator of Sz (z) res-

pectively. Ql" and QZ" are the second order derivatives of Q1 and Q2.
When z = 1, equation (14) is equal to zero, i.e., §,(1)=0, .
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For ease of application, it 1s customary to further simplify S(z)
and the Z=exp(—ju) 1in equation (2) is substituted and restored as a
function of u. Through the simplification of equation (13), and omitt-
ing the common factor term z*®2 which represents the phase center
position of the far away region of the array, the expression of sum
pattern S(u) can be obtained:

! ﬁnigL adﬁn-lili—u 3
S(u)=—3—11+ ” - (16)

Y 2o T
. -2 - .
sin—2- adsm" u

. 4

: et |, ! (17) *
i sin—— s -

If the array is formed by the same radiation elements, the actual
array pattern 1s the product of the above equation and the element pat- !1
tern. For example, the array corresponding to equation (16) 1is formed
by half wave osclllator coaxlial array with a pattern:
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x
cos—Y__

Fy(u)= l/l -Zk_‘:_:‘y (18)

Let us choose n = 14, ad = %, then the array sum pattern bhecomes:

sinsusin—“—\ x
S(H)- sin7y -+ 2 2kd (19)
' u u ’ u \?
so—-  6sint— }/1-(-,.7)
The maximum radiation value 1s
(20)

Simas™Sas= S (0)=21

In Figure 3 we obtained the calculated results from equation (19)
and the experimental results. The dotted line in the figure is based
on calculated results. The solid line i1s the pattern obtained from
the x band rectangular wave width longitudinal half wave crack array.
Its excitation form 1s as shown in Figure 2(a). The comparison of cal-
culated and measured results showed that in the major region the two
basically coincide. The half power wave band width 1s very close
which 1s about 2A8~5.31° . In the visible region of 8 =0~ (% u[<251.82")
the calculated zero point, side lobe position and relative voltage are
as follows:

bp?ti__fl}t . ugam +30.92, +51.43, +78.94, +102.86, +129.28, +154.29.
S1tion
f;i)de Tobe +180.00, +205.71, +230.73, *251.82

position ui=~ 40, *64, *90, 115, +141, *167, +£192, 217, *241;
relation volc- _ 09751, +0.08044, —0.05087, +0.04599, —0.03437,

age of the side 1
+0.02992, -—0,02485, +0.01871, —0.01172,

According to equation (14), after simplification we can obtain the
difference pattern of the excitatlon array with a shape as in Figure
2(b) using u as the independent variable:

sm'l—-zumm /

1)(:4)-[2!11\"l + -

n—-2 4 4 . u
sin —— (21)
4 2 sin_.u_ 2 -
1 . Jl
Still using n = 14 and ad = g to substitute into equation (24), we get
f Tu -‘/
- sin 3ucos ——
D(w)=!1+2sm Tt o —— 2 sin (22)
l Ssin 5~ |

-
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D,(0)=1imD,(4)=10
. w9 (23)
The results calculated from equation (22) are plotted in Figure 4
Only the region where uz>0 1is drawn. The region in which 4<0 appears
to be antisymmetric. The validity of the equations have been verified.

Si(u
"L
4.9 ——measured )
—---calculated (using Eq. 22)

n-u.od=%

u = kdcosd = 251.82 “cos@
d=22.37mm, k=2x/A
f=9373MHz

Fig.3 Comparison of measured result with calculated curve on radistiom pattern at
9375MHz of l4-element linear array

IITI. SUM PATTERNS OF INVERTED TRIANGLE/OR V SHAPED
AMPLITUDE EXCITATION ARRAY

Based on the method introduced in the first section, we can derive
the array function of the 1lnwerted triangular excitation as shown in

Figure 5, 1.e., the sum pattern.

When n 1s an odd number

S.(Z)-adz[”;1 (2 +z--)_L;_l(1 +2-.tl)+zz-(.-0n]/(z —_— 1)3 (2”)
When n is an even number
S )mads| 231z +29- 2L 45"+ (14 )27 [ (2= 1) (25)

Changing the varlable to u, and omltting the terms with the absolute
value of the common exponent equal to 1, equations (24) and (25) then
are transformed into:
u g B
S.(u )-.;‘.‘j_u—<n sinl;—— sin -—;—— 25in‘—':-'— mT— ZSm‘-T) (26)
Zﬁn‘—i— _u__) n = gdad
S(u)=
2

Lom B e B g
n sin—— sin—/—— 2 sin
(g 2 2 4 2/ . =even

t Pihadiiy
2

(27)
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s Fig.4 Calculation of difference for n=14, ad-—:-

F{(3)

. "~ 1
.;1‘,4 dt— 3 ad

_a:.!.

- - ¢ ) S i, —_—— >
0 1...‘-‘d4d,-—~ resgemy (xd) 0 1...-_ldl-—— eerpg—1 (xd

:Y"- Fig.5 Lisear array with V amplitude distribution
b (6) m—odd) (§) ms—even.
b
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It 1s obvious that when u = 0, the radiation has its maximum

S-..=S.(0)-lims.(ﬂ)=£%-(ﬂz— 1) (28)
-0
S....‘S.(O)zliu'x,sa(“)"a:;" (29)

when )1 Semn™Sens=ad*/4 . Naturally, the same results can be
obtained using equations (24) and (25).

The difference excitation corresponding to the V-shaped sum excita-
tion as shown in Figure 5 has a llnear amplitude distribution. The
array function (1.e. difference pattern) obtalned agrees with that in
(4] and will not be repeated here.

We hereby express our indebtedness to Prof. Song Lichuan and Asst. Prof. Mao

?{I‘Z}lﬁ% (‘ggnt over the first draft of this paper.
713 ‘g. K. Cheng and M. T. Ma, A New Mathematical Approsch for Linear Array Analysise IRE Trags.

Antesnas and Propagat., Vol. AP-8, No.3, May 1960, pp.255-259.
21 P.L.Christiansea, On the Closed Form of the Array Factor for Linear Arrays, [EEE Traas.
Antennas and Propagat., Vol. AP-11, No.2, March 1963, pp. 198. .
€3] D.K.Cheng, Z-Transiorms Theory for Linear Array Analysis, [EEE Trans. Aatenpas and Propagat,
Vol. AP-11, No.35, September 1963, pp. 593.
C43 M.T.Ms, Theory and Application of Antenna Arrays, 1974, pp. 24-37.
(3> E.l. Jury, Theory and Agplication of the Z-Transform Method, 1964. pp.3-5, 254-258.
L6] Cheng Chuin, translated by Mao Pei far, Analysls of Linear Systems,
1979 Chinese translation, pp-331-341.
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_ PATTERNS OF MONOPULSE ARRAYS WITH -
TRIANGULAR AMPLITUDE DISTRIBUTION
% Lii Shanwei | -..4

)

(Beijing Instituie of Aeronaulics and Astromawiics)

Abstract

This papet; describes the sum and differeace patterns of monopulse linear -
arrays of equally spaced discrete inphase elements which are excited in such ‘4
a way that the envelope of the excitation amplitudes is uniform, triangular,
or V in shape. Analysis of the radiation patterns is carried out by using exact
or truncated Z-transform, and then the compact form as S (2)= F(2)—G(2),

+i.e.Eq. (4), is obtained. This method was first developed by D. K. Cheng and
M. T. Ma in 1960, With the aid of Eq. (8) or the formula of G (2) derived
from the shifting theorem, S (z) can be found simply by the unilateral Z-
transform without considering whether the envelope function is symmetrical or

v-vﬂ‘. e .
b PP U N

unsymmetrical. Also & numerical example is given, showing that the theore- 5*
tically calculated sum pattern compares quite favorably with that obtained ;
from experiments, especially in the major region the test data and the ana-
lytical results have been found in fairly satisfactory agreement. The difference
pattern also has been checked by- experiments. The method proposed here is ‘

simple and easy to carry out.
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MODIFICATION OF THE WILLENBURG AND MAARSE MODELS AND
APPLICATION TO THE LIFE PREDICTION FOR Ti-6A1-4V ALLOY 89

Beljing Aeronautical Materlals Research Institute,
Zhang Yongkul, Gu Mingda and Yan Minggo

ABSTRACT

The accuracy of the overload retardation effect on fatigue crack
growth is closely related to the formula for the plastic zone chosen
in the retardation model. Hence, this paper proposed a.corrected plas-
tic zone formula to replace those in the Willenborg and Maarse models.
In addition, the material constants C*¥ and n* processed by the AKeff
treatment using the Maarse model were replaced by the constant ampli-
tude material constants C and n In the computation. Through the calcu~
lation of the overload retardation effect of Ti-6Al1-4V titanium plate,
the improved model shown in this paper demonstrated that it not
only has significantly bhigher accuracy than the original models but also
1s convenient to use.

I. INTRODUCTION

The calculation of overload retardation effect in fatigue crack ]
growth is one of the important problems of crack growth life prediction 1
under spectrum loads. Hence, we have carried out experimental studiles ﬂ
on overload retardation characteristics of Ti-6A1-4V titanium plate ‘1
under various overload ratios and various crack lengths. In addition, "
the Wheeler model, Willenborg model, Matsuoka mcdel and Maarse model fﬁ
were chosen to calculate retardation effect quantitatively. Comparisons
and evaluation of the above four retardation models were also carried 5“
out [1]. The study results indicate: =3

(1) the fatigue crack growth form of the titanium plate under test }?
was primarily plane strain or a mixed model primarily with plane strailn; '

(2) the accuracy of the Maarse model and Willenborg was more »
inferior;

(3) the selection of the formula in the plastic zone has a very
significant effect on the estimation of the retardation effect.

L:--‘_‘.A
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As 1s well known, the overload plastic zone is one of the impor-
tant factors controlling the retardation effect. The commonly used
formula for the dimension of the plastic zone is [2]:

e ()

ax
where a 1s a constant: Under plane stress condltion, a = 2; under

plane strain condition, o = 6.

In reality, the specimens seldom were found in ideal plane
stress or plane strain conditions. More of them are situated in
between--mixed type stress state. Especially for specimens or struc-
tures during service, along with the growth of the crack, the stress
condition varled continuously from plane strain + mixed type + plane
stress. Therefore, the use of a fixed constant a to calculate the
dimension of the plastic zone Rp under varylng stress conditions would
definitely cause larger errors.

Received June 1981.

Hence, in order to reflect the characteristics of the fatigue
growth process and the contlnulty ¢of the stress state transformation
process, and to further improve the prediction accuracy of the retard-
ation model, we made attempts to Improve the Willenborg and Maarse models
by correcting the plastic zone dimension formula.

II. IMPROVEMENT FOR WILLENBORG RETARDATION MODEL

In the Willenborg meiel [3], the effective stress intensity factor
reglon AKeff and effective stress ratio AReff were adopted. Because of
ease of use, it has received wide attention. However, tc further
improve the accuracy of the Willenborg model for the prediction of over-
load retardation effect, several researchers used different angles to
carry out the improvement work and obtained relatively more satisfactory
results [(4-6]. The improvement of the Willenborg model in this paper is
limited to the corrective computation of the constant a in the adopted
plastic zone dimension formula (1).
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As 1s well known, for a given materlal the change of stress condl-
tion during crack growth is malnly dependent upon the variations of the
stress 1lntensity factor region AK and the stress ratio R. Hence, when
AK 1s very small or approaching the threshold value AKth, 1t can be con-
sidered in a plane strain state and the a in equation (1) should be 6.
When AK 1is very large or very close to AKO (1.e., Kmax is very close to
Ko), it can be considered in a plane stress state and the a should be 2°
in equation (1). The intermediate section is in a mixed stress state
and the a should be a fixed function of AK. T1herefore, we can assume

that when the stress relaxation condition is not considered

6
@=T1%2S (2)

where Ko 1s the fracture modulus.
s=bK-AKw __ (1 =R)K..—AK,
AK, (1+R)K,

Kaw——Ba (3)
- (1-—-R)
S X

where Ko Is the fracture modulus.

Equations (1), (2) and (3) are the improved plastic zone calcula-
tion formula of Willenborg model. Obviously, o 1s no longer a fixed
constant; it 1s a function of Kmax and R.

The physical meaning of S can be envisloned as the ratio of plane
stress. From equations (2) and (3), we get:

under plane strain, 4K 1s small or AK + AK

S +90, a *6
under plane stress, AK is large or Kmax + K
S+ 1, a > 2
In mixed stress condltions, (p<s<1, 2<a<s6,

th?

o’

In order to verify the validity of equation (3), an example is
given here. The experimental data were taken from [7]; the material
used was 3.2 mm thick 2024-T3 aluminum alloy plate. The experimental
data, as well as the numerical results S obtalned from equation (3) are
tabulated in Table 1. From Table 1, it can be concluded that the
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numerlc2l values S calculated ﬁsing equation (3) are relatively close
to the average values SE of the actual measurement.

Table ]| Comparison between the calculated S and the tested Sa
in a 2024-T3 aluminum- alloy

0 b K mER® Ko 3Kn  sigmobrws | 4X
( . -
wwaas) e Prmse | cel_ n;a¥mﬁg‘@S_A{ngzK..
ks Ro. . MPavm | MPavam ! €71 » o) Re
.U | 21 ‘ 0.2 8.0 | 34 0.26 ! 0.25
| ' 24.7 0.21 88.0 i 28 0.34 5 0.32
I ! 2.7 , 0.57 8.0 | L7 0.67 ‘ 0-51

Key: 1l--experimental group number; 2-?overload cyclic stress ratio;
3--average measured value S. of the ratio of slanted cracks
shear type) in fractured crgcks; l--calculated value

ITII. IMPROVEMENT FOR MAARSE RETARDATION MODEL

Maarse model [10] is based on the crack closure theory and its

basic equation is

da ) = _ e - »e
W=C (AK o) CK aas o) )

where Kqop is the opening stress intensity factor corresponding to the crack
opening - load Pop' Maarse used the "residual pressure stress crack
negative opening displacement" assumption to propose an englneering

method to predict Pop, l.e., PoymCo— T_@,_c_.
f(-W—)(G,—G)“‘ (5)
where G,,c B(2a) 2
Com—2 T35 (plane strain)

where B and W are the thickness and width of the specimen respectively;
f(%) is a relevant function of the crack length and specimen geometric

shape in the expression of stress intensity factor; (as-a) is the
length in the x direction in the residual plastic compression zone;
Rvey 1s twice the measured distance from the crack tip to the plastic
compression boundary along the Y direction (Figure 1).

The use of Maarse model to estimate the effect of overload retard-

atlion has two lnconvenient points: one i1s that the material constants

C* and n* in equation (4) must first be treated according to bkerr and
the other 1is that the calculation under mixed type and stress conditions

was not given in the original paperé
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With respect to the abowe two -l(x\zvmm)
polints, we attempted to make sim- *

plifications and additions for the
Maarse model in this paper.

1. Simplificatlion of the calcula<
tion of C¥ and n¥

The Paris equatlon to calculate
the rate of crack growth under con-
stant amplitude 1s

4 .
—%-—=C(_\K)'=C:K_,,(1-R)3' (6)

Fig. 1 Residuai piastic zone geometry and ! i
If we assume that the crack clo- oeation

aliicse
sure stress and opening stress are (X8 vt
equal, and define that the closure

factor C 1is

r, __K. (7)
Cr= P =Ko

then the Maarse equation (U4) used to calculate da/dN can be rewritten
as:

W-C.[K-u( 1 —Cl)].. (8)

Based on the experimental results in [11], equation (6) at 4iff-
erent R 1s a series of approximately parallel lines with difference
intercepts in the %% AK log-log coordinate system. Thils means that
the change of the exponent n is very small. Hence, it can be assumed

that
W= (9)

In fact, for the same condition regardless of the expression, the

crack propagation speed is the same. Then equation (6) should be equal

to equation (8): ClKa(1 =R))=C* (Kuu(1 -C)*

e -y

In the process of additive calculation of crack expansion, it is
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possible to let the initial Pop = 0. The Pop in other stress cycles
can be computed based on equation (5).

Thus, after the simplification through equations (9) and (10), C*
and n* can be calculated using the material constants C and n in equa-
tion (6). Consequently, the application of engineering predictions of
crack propagation life 1s becoming more convenient.

- 2. The extension of residual plastic zone
ii compressible ellipse equation
-

f% In the Maarse model, RYCB is an important parameter in the calcula-
. tion of Pop. However, in the original paper only the ellipse equation
5 determining RYCB under plane strain conditions was given which limited
% the application of this model.

In this paper we attempted to extend the original ellipse equation
to more general conditions, including plane strain, mixed type and plane
stress conditions. The adopted method is the corrected eguation of the
plastic zone dimension described in the previous section of this paper,

i.e., 1 K\
(a,— 6)=Ry=—— ‘;:) (11)

a is calculated based on equations (3) and (2). Thus, the ellipse equa-
tion in the original model is replaced by the following equation:

1
Ty N (12)
1 0.234
2a

IV. CALCULATED RESULTS AND DISCUSSIONS

T,
EA Y y

RN 7 D e ST
PP I

Lt .:" P -

; In this paper the overload retardation effect was calculated using
o the additive method in combination with improved Willenborg model and
Eﬁ Maarse model to predict the crack propagation behavior in Ti-6A1-4V

hi titanium plate overloading equipment. The results were compared with

those of original corresponding models and experimental results [1].
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The relevant data for the computation are the following:

] The specimen is 300x100x2 mm of the center crack tensile (CCT) type, P
.- the basic cyclic stress ratio pa=P_/P..= 1.6kN/16.0kN=0.1, 94/95
= the yield stress of the material 0,=917.0MPa; K,=115.4MPay m®?, \K,, 1
=6.5MPay’ m*® ; the material constants C and n are listed in Table 2 ,j
b (in Paris equation, AK> 13.5 MPay’' m); Poisson ratio v=0.33. .'
_ Table 2 Material constants in FCG for Ti-6Al-4V ]
]
- computational equation | - c , » .
i ;“’ ; 1.341x 1077 2.515 5
3 H .
Figure 2 shows the predicted [ — Y ] r‘.
OO (rtpu———C)

retardation cycle number and mea- o ——— : 4

sured number ND using both improved . et . ] ";1_'

and original Willenborg and Maarse — -4

. s X. _xpenmerm::n eta .-

models (overload ratio Q, =P,./Pea=1.8) 8 ‘J;‘l::&:‘,..e:’“ b

under a single tensile overload). r Modified model = 1

Figure 2 also shows the variation [

of o before and after the improve- 3 1 i-"‘f

ment. - It is obvious that the cor- ;é ‘ .3

4 -

rected a value 1s adjusted automat- | * "3

ically (without the need of making ,4_ ] 3

a selection beforehand) based on the i :

p L N Il N . s o4

variation of the overload level KOL g 5 L L J »
between the original constant values . Koo (MPa ) ™3

of 6nv2. This advantage may be more
significant in the prediction of

Fig. 2 Coefficient @ agd aumber of delay cycles Vo ;
crack propagation life under complex s Kon for T6ALAV alloy (1= 1.8) ¢ J
spectrum loads. M

It 1s also possible to see from Figure 2 that the calculated ND,cal _ .
values of plane stress (A in Figure 2) and plane stralin (V in Figure 2) ®
using the Willenborg model deviated highly from the actually measured -
value ND E The former was shifted toward danger and the latter toward
safety. The improved Willenborg model predication (in Figure 2)
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single teasile overioads at QorL=1.8

Npx1to?

¥ --Egperimental data
0 Maarse mode!
B Modified modal

'

30 40

) )
Kot (MPav/m )

70

Q imm)
32 - v b 4
| N NNl / /
MODEL MBS N | Ne 'NL.J ¥ l
) Tos2 —o— 148600; <2798 -
39 Willenborg Yos§ —o— 111261 <419 /
Modified Model |~-w— N20762|M6RL. 309
iMaarse  Model | —O— mk226
= Modified Model [—e—N13736 J
x-Experiment Data
Qo=
20\. -
15 n ]
{
¢
[}
10 Overicad L ] . . . N . . .
v 4 6 8 10 12 %
0 2 ‘ Nxio*
Fig. S The experimental curve ( 8 -N) and predictedcurves various models under a series of

Fig. 4 Comparison between predicted results and experimental data of Np (Qor=2.0)
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Table3 Comparison of predicting accuracy of modified models

with original. medels

Willenborg#® (| %itms ®
as=2 a=8 éi’ Willeaborgi® 2 ! @
zND[C‘l
DR
wxrsgaxy| ¢ 0.53 083 | 0.37 0.83
=54 !
Nea-V, |
Ve | +20.98% | -4.19% +3.99% - 10.25% -2.06%
anan @

l--error; 2--Willenborg model; 3--plane stress; b--plane strain;

5--improved Willenborg model; 6--Maarse model; 7--1improved

Maarse model; 8--(predicated average value and measured average

value); 9--relative error

1072

X
-]
L

Experimental data
Maacse model
Modified model

1073

— dafdN
-—- Py
Qo= Pot/Parm ® 2.0

]
s /
E m—d-
s [
3
~415.0
1078
4 ~
Pii 1 ?lo.og
# e
[ al
r : b 4 ~5.30
9= = sy et m Sy TS ]
10 ) :
. [] . s 20
24.0 4.5 N 25.0 28.3

3(mm)

Fig. 5 -:"\T" s asd P.p s & curves in a single tensile overicad retardation zome for Ti-6Al~4V alloy
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however, was located in between the above results.

B

2

The calculated a-N curves of crack propagation under multiple
single tensile overload based on the improved and original Willenborg
and Maarse models as well as the measured a-N curve were all plotted
in Figure 3.

R TR

Figure U4 also shows the calculated and measured values of the

Lo

improved and original Maarse model when QOL = 2.0,

Summarizing Figures 2, 3 and 4, the computationél accuracies of
the above models before and after the improvement are listed in Table 3.

The Ne and Ncal in Table 3 represent the measured and calculated
number of load cycles necessary to propagate a crack with a half length
a =11 mm to 35 mm.

Y

ke

Apparently, from Table 3, the accuracy of the improved Willenborg
model 1s significantly higher than that of the original model and its
absolute error is minimal. Similarly, the improved Maarse model has a
higher prediction accuracy than that of the original model with more

N 3B VAN

satisfactory results.

For further comparison and exploration, Figure 5 plots the retard- 4
ation characteristics of crack propagation under single tensile over- )
load: %% - a vs. Pop - a curve. From Figure 5, durling the variation . ;
of the external load P from low-high-low, the variation of crack open-
ing load Pop as described by the Maarse modg; which 1s based on the
crack closure effect and the corresponding an is shown. When the peak
load POL Just appears, Pop immediately drops to a minimum (caused by
the split tip dullness of POL) and then it gradually rises to a maximum
(maximum value of Ryg corresponding to POL) and begins to decline until

it reaches the constant amplitude steady POP' At this time the retard- -
ation effect disappears. The corresponding variation of %% 1s opposite
da

to that of Pop' In the figure it also 1ndicates that the 3N curve
calculated based on the improved Maarse model approaches the experi-
mental curve more than that of the criginal model. Similarly, the retarda-

.
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retardation model based on the closure effect can better describe the
five stages [1] of the retardation process and thus are conceptually
better from a physics point of view.

The above is a comparison of the prediction of overload retardation
effect for the material Ti-6A1-4V under two overload ratio and various
crack lengths. As for the application of other materials and compli-
cated spectrum loads, further verification is required.

V. CONCLUSIONS

1. The plastic zone correction equation proposed in this paper is

R=-Ll( K Y
'““'ci‘)

where

Q- 6
T
S=(AK-AK.W) /(1 -R)K,

The corrected plastic zone equation can more closely reflect the
characteristics of fatigue crack propagation and the continulity of
stress state transformation. Hence, it 1s posslble to be suitable for
the variable stress condition under variable loads.

2. The improved Willenborg model and Maarse model have a wider
range of appllicability than the original ones. They are convenient to
use and the accuracy is significantly higtar.
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MODIFICATION OF THE WILLENBORG AND MAARSE MODELS

AND APPLICATION TO THE LIFE PREDICTION

FOR Ti—6Al-4V ALLOY
Zhang Yonghui, Gu Mingda and Yan Minggao
(Insiiivie of Aeromauiical Mdierials)
Abstract

The prediction accuracy of the overload retardation effect on fatigue crack
growth (FCG) is closely related to the formula for the plastic zone adopted
by each retardation model. Hence, ia order to express more ra‘ionally the
behavior of fatigue.crack growth process and the continuity of the stress state
transformation (from plane strain to plane stress mode), the coefficient @ in
the formula for the plastic zone used in the Willenborg and Maarse models

can be expressed as the following:

Q= 6
1 +2S5
where

AK—AKM
( 1- R)Kc

Sis the fraction of the stress pert in a fracture surface. Mecanwhile.it was

S=

found that the material constants C* and 8" in the formula of the Maarse
model can be substituted by C and # obtained from the constant amplitude
loading tests.

From the above mentioned modification of the Willenborg and Maarse
models, it is recognized that the modified models can be applied more success—
fully and conveniently to the life prediction for Ti~6Al-4V alloy under a
single tensile or a series of single temsile overloads. The results calculated with
the modified models were fouand to be fairly consistent with the experimental

data.
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STUDY ON THE MEASURING TECHNIQUE OF THIN BOUNDARY LAYERS 112

Nanjing Aeronautical Institute, He Zhongwel

ABSTRACT

This paper introduced a self-designed and fabricated miniature .
driver with measuring probes for measurement of thin boundary layers. E
The driver used the Chinese made Hwel model 28BF001 stepmotor as the ?
main design body. It transforms the angular displacement of the motor a
into linear displacement. The minimum linear veloclty 1s 0.00625 mm 1

per unit pulse. Its working travel is 5.0 mm. It has good static char-
acteristics. The outside diameter is 28 mm and height is 50 mm. The
structure 1s simple. In the paper two types of thin boundary layer
probes were introduced.

The results of the use of 1t in a supersonic flow showed that the
driver worked reliably. The probe did not show any vibration and was
able to measure thin boundary layer velocity distribution with accuracy.

In the present conditlons of the dlmensions of supersonic tunnels
in our country, it bhas very practical meaning [1] to design a miniature

driver with boundary layer probe to measure thin boundary layers. This ﬂ
paper introduces a self-designed and developed miniature driver and ﬂ
probe. :

©o1

I. MINIATURE DRIVER FOR MEASUREMENT OF BOUNDARY LAYERS

The main body of the driver is a domestic model 28BF00l1 step mot.rv.
The electrical step angle is 3°. The maximum static rotation moment
is 0.18 kg.cm. The outside dlameter 1s 28 mm, length is 28 mm.

The design principle of the driver is simple. The structure is ]
compact. A precisely machined M 6.5 x 0.75 fine screw-treaded rod made
of durable copper materiallwas lightly heat pressed on the electrical
shaft. The treaded rod is installed with precisely machined screw-nuts. )
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When the treaded rod produced an angular displacement along with the
electrical shaft due to an external electric pulse signal, the screw
nut in the very smooth square groove together with the probe installed
on 1its top was constrained to move up or down. When fabricating the
driver, precision machining is required. The threaded rod and the screw
nut must be matched so that after installation their friction force
and spaclng are very small.

Figure 1 represents the 204-2 driver structural schematic diagram.
The main data are in the following: Minimum linear velocity is 0.00625
mm per pulse, working travel is 5.0 mm; the static characteristics of
the driver are shown in Figure 2. Curves B and C (reproducibility) are
statlc characteristic curves determined by the powerful toolmicroscope.
A 1s the theoretical curve; B and C are very close to A.

The driver is controlled directly using tre domestic BQDI-001 driv-
ing power source. It 1s convenient to use. It is possible to make
corrections through the use of that driving power source, the movement
velocity, direction and position of the probe fixed at the top of the

driver can be controlled by frequency variation, fixing direction and:
fixing phase.

Received MMy 2981.

II. DESIGN OF THIN BOUNDARY LAYER TOTAL
PRESSURE PROBE

Through the analysis of the possible displace-
ment of the probe in supersonic flow, we designed
a special probe (Figure 3) from actual practical
experience. In order to avoid the effect of the
probe lever on the measured total pressure valve
let us take L[/d>10, and I/L-+ . Beginning

28BFo01

Fig.1 Schematic_of driver with strengthening the stiffness of the probe, the
- H h m -
”‘2“”::1321 ’ tip of the probe, is made into an arc shape and

the probe level is made into a loop structure.
The front extending portion of the
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Fig. 2 The static characteristics of driver 204~2

Ay

Key: 1l--statlic curve determined using the all purpose microscope; p
2--static curve determined by reproducibility; 3--theoretical :
curve; l--electrical step angle 3°; S5--spacing of screw thread;
6--electric pulse counter; T--linear displacement
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probe 1s 7-8° sharply split. The inner channel of the probe is an
expansion type to facllitate the pressure measurement response speed.

In order to ensure that the lower surface of the probe and the

surface of the object have a linear contact, the lower surface of the
forward extenslon portion of the probe and the surface of the object
maintain a 3° inclination angle. The outside heights of the two types

of probes are 0.2 mm and 0.14 mm and the inside heights are 0.1 mm and
0.07 mm. The inside wildth and outside width at the 1.0 mm opening of the probe
are 0.8 mm and 0.6 mm, respectively. The top of the probe was made into
shape by directly bheating 0.8 mm a stainless steel tube until red hot.

- The sizes of the probe opening were measured using a standard plug cal-
liper. The external shape of the two probes 1s the same. The external ,
shape and size were examined optically. The sizes of the opening of the lO?q
two probes are equivalent to those of the boundary layer probes used X
internationally [2,3].

ITI. APPLICATION EXAMPLES

In the single-support point semi-soft wall nozzle supersonic tunnel
at Nanjing Aeronautical Institute, the model 204-2 driver with boundary
layer probe was used to measure the boundary layer parameters on the
second cone of the intake of a certain alrplane. Experimental condi- "
tions were: Incoming flow Mach number M.=1.97, 2.10 ; downward inclin- |
ation angle of the nozzle a¢=0°, The pressure measuring system: SY¥YD-1 ‘Q

t

transducer and XJ-100 circult measuring meter equipped with model LS-5

®
digital recorder. =3
When the boundary layer of the cone was measured, the driver was if
installed inside the cone and the probe reached out on the cone surface ‘

(Figure 4). During the measurement of boundary, the probe moved grad- T
ually from the side out starting from the surface according to a step :
of 10 pulses per stop. The match between the probe level and the cone
body 1s very important. Flve pressure measuring tubes were specially
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()
installed inside the cone chamber. The measured results reflected that )
internal pressure variation in the cone chamber was very slight before
and during the experiment. This explains that the boundary layer of
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the cone surface did not have a conical inward flow (Figure 4). In
éddition, right underneath the probe opening, a 0.6 mm diameter sta-

tic pressure tube was installed on the cone surface. It is electri-

cally isolated from the cone. In the experiment the static pressure

tube carried electricity. When the probe and the end surface of the

static pressure tube come into contact, an indicator light comes on.

The extingulished light was a symbol for the starting of the boundary -

layer.
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Fig. 4 Position of driver 204-2 with a probe ia a bicone.

U

Key: 1l--electric insulation; 2--solder; 3-~to transducer; 4--T press-
ure tube to transducer; 5--static pressure tube; 6--size 80
particle size; 7--204-2 transducer

Fig. 5 Schlieren photograpk of sbock wave
pattern og the hirone
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Experlimental observation showed that the driver and probe could
work steadily 1n supersonic flow. Only during the start-up of the
tunnel, because of the instabllity of the flow, the probe-surface con-
tact indicator light twinkled weakly. However, after the start-up of
the tunnel, the indicator light stayed on constantly. In the experi-
ment observation was made especlally with respect to the motion of the
probe. On the frame of the observation window of the tunnel, a 0.25 mm
dlameter steel wilre was fixed in the transverse direction and the prcbe
opening was placed close to the image of the steel wire. Then, the
tunnel was started and after repeated observations, the probe was not
found to move relative to the steel wire in stable supersonic flows.

No probe vibration was found either.

Schlieren photograph of the probe and shock wave pattern on the
bicone under the super critical conditlon at the intake at M.=2.10, a =¢°
is shown in Figure 5.

Pigure 6 shows the boundary layer velocity distribution of the
second conical surface of the center cone at the station 60 mm from the
conical tip. The boundary layer velocity distribution of the same
cross-section measured by 204-2-1 and 204-2-2 probes are shown in the
figure. In the figure y represents the perpendicular distance from the
probe center to the surface; §--thickness of the boundary layer; u--
local flow speed at the boundary layer; U_--boundary layer interface
flow velocity; N--exponent.

In comparison of velocity distribution, the probe was placed as
far away from the surface as possible not affecting the static pressure
underneath. This value was used to represent the static pressure of
the entire cross-section. As for speed 1in the boundary layer above
the sonic speed, a correction must be made based on positive shock wave
loss 1in order to obtain the actual speed of the wave front.
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Fig. 8 Boundary layer profiles on the second comical surface at the station 60@ @ from the comical tip

Key: 1l--use 204-2-1 probe; 2--use 2-4-2-2 probe; 3--conical tip
’ has turning band (Figure 4); 4--204-2-1 type; 5--204-2-2
type; 6--unit: mm

CONCLUSIONS

Under the condition M.=2.10, 1.97 and a=0" , for a 1:10 scale
intake second conical surface of a certain airplane, experimental
results of boundary layer verified:

1. Model 204-2 driver can completely satisfy the requirements of
measuring thin boundary layer. The minimum linear velocity of the
: driver 1is 0.00625 mm per pulse; working travel is 5.0 mm. It has good
?. static characteristics. The experimental and theoretical values are
|

=
fe
ol
L.

t? very close. It works reliably and 1its structure is simple. Its success-
f;; ful miniaturization has provided a very important means in the small

E% scale boundary layer control study.

»

Sﬁ 2. 204-2 type boundary layer probe size i1s equivalent to that

Eﬁi used internally. The probe has excellent rigidity. It shows no vibra-
ﬁ; tion in high speed flow. The probe can work steadily.
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After more than half a year of actual use, it 1s verified that
the mentioned driver and probe for measurement of boundary layer can !_
completely satisfy the requirements in measuring thin boundary layers. . ]
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STUDY ON THE MEASURING TECHNIQUE OF THIN

BOUNDARY LAYERS
He Zhongwei
(Nanjing Aeronawdical Institute)

Abstract

A type of miniature driver with measuring probe 204-2 designed by our-

selves for measurement of thin boundary lavers is described. In the design the
homemade miniature stepmotor 28BF001 serves as a main body. The driver is
simple in construction (see Fig. 1) and reliable in operation. It transforms the
angular displacement of the motor into linear displacement. Its minimum linear
velocity is 0.00625mm per unit pulse, and its working travel is 5.0mm. The
driver with an outside diameter of 28mm and height of 50mm has good static
characteristics (Fig. 2). It is found that the experimental curve A, C extremely
coincides with the theoretical curve B,
3 Two types of measuring probes 204-2 are siso presented in this paper.
The outer height is 0.2mm and inner height 0.1mm for one probe tip, while
for another they are 0.14mm and 0.07mm respectively. Both tips possess the
same outer width of 1.0mm and the inner one of 0.6mm. The configurations
of both probes are the same (see Fig. 3).

The driver and the probes presented above have already been used for
measuring the boundary layer parameters on the second cone of a supersonic
intake working in supercritical conditions (Figs 4 and 5). The experiments were
carried out in our supersonic intake tunnel with free-stream Mach numbers
1.97 and 2.10. The boundary layer profiles were shown in Fig. 6.

B} observing the movement of the probes during the experiments, it was
proved that:the driver and probes worked steadily in a supersonic flow with-
out vibration, and the thin boundary layer profiles measured were quite
correct,
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¥ MICROMECHANICAL ANALYSIS OF CREEP CRACK GROWTH

Tl SRR

P ON A NICKEL BASED SUPERALLOY
. £
. Beijing Iron and Steel Research Institute -3
. Shen Huiwang, Gao Zhentao, Liu Changfu and Cal Qigung -
3
ABSTRACT 1
The stress rupture life test of smooth and precracked superalloy ;
specimens shows that a small pre-exlsting crack .can seriously reduce I"‘

the stress rupture strength and life of superalloy components.

Scanning electron microscopy and metallograpbic analyses indicate ]
that the crack propagates along graln boundaries by cavitation. Based ‘ﬁ
on micromechanlcal analysis of the cavity growth and coalescence with
the main crack tip, creep crack propagation equations were derived based
on creep J integral parameter & and crack opening displacement (COD) B
rate é. Experimental data of GH33A superalloy proved the above fracture i;
mechanical analysis.

I. INTRODUCTION

F SURBTREN

The crack formation and propagatlon analyses on the bottom of the ?ﬁ
outer wheel of the turbine or at the root of the groove, or in the fﬁ
blade are complicated because of hot corrosion and the interaction be- :§€
tween strain fatigue and creep. The high temperature zone of the engine "B
sometimes has (or through hot corrosion forms)small cracks. Under the Ti
high temperature creep conditions these small cracks interact with the .ff
grain boundary cavities which causes these pre-existing small cracks to if
rapidly propagate. éj

In the past, long crack specimens were used in creep crack growth ;5?
experiments which were limited to cgrtain creep conditions. However, in Eﬁﬁ
bigh temperature components, most of the cracks formed by welding and !:
hot corrosion have much smaller dimensions than that of the cross- L
section of the components. 1In addition, periodic check-up and mainte- f
nance also would not allow the crack to grow too long. From the view- ;:j
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point of design 1life and fracture control, it is necessary to carry out
experimental analysis on the rupture life and crack propagation
using superalloy speclmens with pre-existing small cracks under total
creep yleld conditions. Thls paper 1s based on this consideration.

A study on the creep crack propagation of superalloy was performed by
understanding the mechanisms of grain boundary cavity formation, growth
and coalescence due to creep strain during each flight cycle of the
engine turbine.

II. EXPERIMENTAL METHOD AND MATERIAL

The superalloy (GH33A) used in the experiment was melted in a
three-ton electric furnace and then fabricated into material. The

major chemical components of the alloy are Ni-20%Cr—2.5%Ti—0.7%Al—1.5%Nb,

The heat '‘treatment schedule 1s 1080°Cx8 hours solid solution, 750°C
x16 hours. The constant temperature mechanical characteristics are:
og = 1226, 0.2 ® 814, & = 31%, v = 35%.

S ntatatmtlin " m e T o el s o awtea B At —omtaloA oA . m S U YOS

Received January 1981.

The specimens used in the creep test were cylindrical and plate
specimens. The dimensions of cylindrical specimens are ¢22x100 (mm),
and 4$10x100 (mm) and the plate specimen sizes are 3x20x60 (mm) and
3x25x60 (mm).

For the 10 mm diameter c¢ylindrical specimen and plate specimens,
the cracks were pre-fabricated at ambient temperature and then creep

fracture experiments were carried out at high temperature.

The fractured surface was examined using the British made SEM-Su-IO
for observation.

III. ANALYSIS OF EXPERIMENTAL RESULTS AND DISCUSSION

From the stress rupture 1life experiment results obtained for
smooth and pre-fabricated cracked specimens of superalloy as shown in
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Fig.1 Stress rupture life of smooth sud precracked superalloy
specimens at 700°C )

Key: 1l--smooth specimen; 2--prefabricated crack, (mm); 3--(MPa)
Y—-prefabricated crack, (mm); 5--prefabricated crack, (mm);
6--1ife (hrs)

Figure 1, it is seen that pre-existing cracks can seriously decrease the
stress endurance life and strength.

Metallographic analyses of the fractured surface and measured sur-
face indicated that the crack propagated along the grain boundary )
(Figure 2). Concentrated spots were located on the fractured surface
along the grain boundary (Figure 2(a) which showed the érack propaga-
tion was realized through the growth of the grain boundary cavities’
and the coalescence with the main crack. Therefore, it is necessary to
establish the law of creep crack propagation along the grain btoundary
based on the microplastic mechanical aﬁalysis of grain boundary cavita-
tion growth and coalescence with the main crack under the strain field
caused by the creep stress in front of the crack. 1In this paper, the
crack opening displacement rate and creep J integral parameter J are o
used to replace stress intensity factor K. Because under high tempera-
ture and high stress conditions, in the total creep yleld region of
existing small cracks, the creep rate 1s high which quickly relaxes the
elastic stress fleld, hence the crack tip field is controlled by power
multiplication of the equation of creep regularity. For material with a
power multiplication creep regularity (i= ac®”) , the equations of mech-
anics and the solutions are completely similar to those of pure power
s0l1id material [2] (where & is creep rate; n is creep exponent; a is
a material constant related to temperature; a 1s stress). For a
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spherical hole with an instantaneous radius R in.an infinitely large
creeping material, its radial displacement rate R can be expressed as

' T‘?-‘W'i(ﬂ) (1)
where R(s) 1s a parameter related to the rigidity of the material.
For a pure rigid material, equation (1) can be obtained using the
similarity analysis method according to the literature [2]. Let us
assume that the rate of creep cavitation growth in the crack tip region
can be approximated by the cavitation creep growth rate described above.
It 1s worthwhile noticing that only when the cavity 1s very small rela-
tive to the space where the cavity exlists that the above assumption 1is
correct. Because the cavity growth 1life is mainly spent in the initial
growth period when the cavity 1s still small, this approximation is rea-
sonable. Then we get: .
R(x) - R
R(x) —e(o(%)IR(n)=i(x)f(n) (2)

where o(x) and é€(x) can be any arbitrary stress and strain rate compo-
nents at the tip of the crack.

Under steady crack propagation conditions, it 1s possible to cal-
culate the crack growth rate by considering that the crack tip moves
toward the cavity or the cavity moves toward the crack tip. If A is
the average ditance between cavities, under the condition that steady
state propagation rate is 3--%% , in the process that the cavity
approaches the crack tip at x = % from the distance x = X the radius
of tpe cavity grows from the critical radius Ro to the final radius
Rﬂ"%— to coalesce with the crack tip which ensures the steady state
propagation of cracks. When considering the ‘cavity growth at a fixed
point, there should be a +x= constant. .Therefore, ‘u-—a---—d-t-,

By considering J.(x)=Ri x 'dt=—R(x) ;9and substituting into equation
(2), we get © A A
f’ g -f P romin(-4)
R * (3)
and ., da f(n)
e==ar = A r ¢( x)dx
.lnm _%_
where L is the dimension of the effect stress field region at the
crack tip which 1s the 1inception nucleus of the cavity, amd a coordinate
increases at significant rates and is used as the cut-off distance and
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Fig. 2 Creep crack growth aiong grain boundacies 1
(a) SEM micrograph of fracture suriaces maguification x 500, »
(&) Metallograph micrograph magnification x 200, NS




lower 1limit of the integrals of the right band side of the above equa-~-
tion. Therefore, for materials following power product creep law, it 1is
possible to obtain from the analytical method in [2] that:

i(x)-(—%—)@(-%-, n) (4)
where ¢(x) is the arbitrary strain component at x. Substitute into
equation (3) to obtian the crack propagation law described by the crack
opening displacement rate parameter §:

da_
5 =Bb (5)

(f(n)/lan)J *(3, »)d(5),

can be experimentally determined by creep fracture experiments.

Using the singularity relation i v

i(x)=a _J_ *+1z(0, 8)» (where , l"
alnx #
i(o,n) ) 1s the ‘angular factor para-
meter of:(9,n)9=0), the crack propa- D‘O—O—O
2R, X
gation law described by the creep J -~ i
integral parameter J can also be ob- i
tained by substituting it into equa- a ,ox

| t

tion (3). ‘ '
da -
(6)

F =Cm

grain boundaries under crack tip creep

i D -t
Where C'(’ (n)/ ‘“EA?T) J—. A “(—ri x ) "T(0,n)dy %3 Growthof carities formed along
=

stress strain field and their coaiescence
This relation agrees with a large with the main crack tip

amount of experimental data provided in (6].

Shib and Hutchinson [7] gave the finite element results of power
product law creep material plane stress crack tensile plate §:

. a bo \'
a-agg(—b—. ")“(‘b—_?) (7)
where b 1s the width of the plate. Substituting equation (7) into (5),
we get da _ bo \*
s, - odss)

. ha_lo

COPRR P )
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a
pmctin(-S )
: which can be treated as a constant in engineering :
;i applications. Equation (8) begins to integrate from the initial crack FJ
E* depth aJ to the final depth a, to obtain ]
: =
o o ] __a\ .
e (l - )dasDoi (9) ]

At T00°C, 1t has been determined that the éfeep exponent n = 10 and
creep crack propagation coefficlient D = 0.703:10-26 for superalloy crack
tensile plate. The corresponding experimental results are shown 1in .
Figure 1. The two s0lid lines on the very bottom were curves obtained
from the numerical integration of equation (9) by using n = 10, D =
0.70x1072%, 4, = 2 mm, a, = 4 mm and a, = 10 mm. The points in the
figure are the actual points of measurement which completely coincide
with the calculated values. Although the above are experimental results
obtained from thin plates under creep conditions, it is possible to
extend to the crack growth law of small cracks under total creep yileld -
thin plates. When .%—-o s the integral gives the result
@ =g exp(0.70x 10"*0'%), . However, for the small surface cracks frequently 3
encountered in engine components, these cracks are not located in the
plane stress and durable band creep regions but primarily in the plane ’j
strain and total creep region. Hence, a stress rupture experiment ’
(Figure 1) was performed on a cylindrical tensile sample with prefab- N
ricated surface crack at a depth of 0.5-0.8 mm under plane strain con- ;Q
ditions. Under tough zone creep conditions, due to the complexity of Y
geometry involved with the cylindrical specimen under force, the anal-
ysis of 1life and propagation rate of the surface crack becomes relz -
tively more difficult. Therefore, 1t 1is necessary to limlt the experi- ‘
ment under total creep conditlons. It is to say that an interrupted =
stress endurance test was performed using tensile rod with pre-existing
cracks at 0.5-0.8 mm depth to make the final crack depth a_. not exceed

po

£

2.5 mm. Therefore, under total creep conditions 6 =21Qa(ac") ;ﬂ
obtained from [2] can be plugged into equation (5) and after integration =1
we get Do =12 B
where D=21QeB ; Q--crack shape factor '3
7

]
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At T700°C, under plane strain conditions, the creep exponent of
the superalloy was experimentally determined to be n = 10. Under total y
creep yield conditions, the same result as equation (10) was obtained '
by substituting j=zuomjﬁdﬂn into equation (6) where D=
- C[-?R Q‘a;_:-l-}m . The photograph in Figure 2(b) is a sideview of a
i! metallographic crack from the interrupted stress experiment. The -cut-
. ting depth is 0.72 mm. The fatigue crack depth across the grain is
0.1 mm measured from the picture. The initial crack depth a, = 0.82

P e o . T T
. D B eel
L L LTS e

-e oo

. i
L mm. The creep crack along the grain boundary in the photograph is 0.4
:! mm. Therefore, ap = 1.22 mm. The experimental stress o = 373 MPa and P

period t = 153 hours. Putting the data into the equations, the creep

= crack propagation coefficient under plane strain conditions was calcu-
lated tc be D=in ;gg /373'°x 153=90.50 x 10"** Consequently, the crack propaga- :
tion formula, o =g,exp(0.50x10°%0%] 1s obtained under plane strain F
and total creep conditions. It 1s worthwhile noticing that the crack

propagation rate in this paper 1is two orders of magnitude lower under B
plane strain conditions than that of plane stress conditions. SEM anal-
ysis of fractured surface showed that the cavity size and spacing in
the middle region under plane strain are much smaller than those of

- o

plane stress specimens (Figure 4). This explains that the cavity pro-
pagation rate and creep rate at the crack tip are lower under plane
strain conditions. Therefore, before the coalescence of cavities more

I 2 AR

cavitation nuclei were formed. Experimental results showed that under
plane strain and total creep condlitions small surface cracks are not
the same as those penetrating cracks of thin plates under plane stress
and durable band creep conditions. Hence, 1n order to more precilsely '
predict the 1life and crack propagation rate of engline components with
pre-existing surface cracks, it 1s necessary to carry out stress endur-

w

ance life and crack propagation rate analysis and test using specimens
with pre-existing small surface cracks under plane strain and total -
creep conditions. N

= IV CONCLUSIONS

f:,"' -
Ei Pre-exlisting small cracks 1in superalloy components can seriously

;ﬂ decrease stress rupture life and strength.
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Fig. 4 Cavities formed along grain boundaries at 700°C SEM micrographs of fracture surfaces X 500
(@) Plage strain; (b) Plage stress.

On the basis of micromechanical analysis, using crack opening

displacement rate and creep J integral to evaluate, fracture mechan-

ical analysis has been performed for power product creep material crack
tensile specimens. It was discovered that the creep propagation rate
is two orders of magnitude lower 1in plane strain conditions than that i"
in plane stress conditions. n
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MICROMECHANICAL ANALYSIS OF CREEP CRACK

GROWTH ON A NICKEL-BASE SUPERALLOY
Shen Huiwang, Gao Zhentao, Liu Changfu, Cai Qigung
(Cexiral Iron and Sieel Research Insliiute)

Abstract

Experiment on stress rupture life of smooth and precracked superalloy

specimens shows that small preexisting crack seriously reduces the stress rup-
ture strength and life of superalloy components.

SEM and metallographic analysis indicate that the crack grows along grain
boundaries by cavitation. Based on micromechunical analysis of the cavity
growth and coalescence with the main crack tip, creep crack growth formulas
were derived by using creep / integral parameter J and COD rate parameter b.
Experimental data on GHsa superalloy have verified the above fraciure mecha-

nical analysis.
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THE "VIBRATION THEORY AND APPLIED SCIENCE CONFERENCE"

t! Jointly held by Chlna Aeronautical and Astronautical Soclety ;%
g and China Mechanlcs Soclety . h

The China Aeronautical and Astronautical Soclilety and the China
Mechanics Soclety beld the "Vibratlon Theory and Applied Scilence Con- b
ference" on December 10-16, 1981 in Quinming. The formal representatives ‘j
and the attending representatives were 168 in total. They came from 20 1
provinces and cities and 81 organizations. There .were 115 papers pre- -
sented. The meeting reviewed the research results of vibration theory if
and 1ts application in our country.

Some of the experts attending the meeting gave technical reports. ]
As examples, papers such as "Coupled mechanical problems of fluid and !a
structures" by Professor Tu Ching hua, "Identification of time-space "]
parameters and on-board reduction methods" by Professor Huang Wenhu,
"Application of vibration theory in mechanical fields" by Professor 3
Chu Weitu and "Structural mechanics of space craft" by Professor Hu '4
Haichan, etc., benefited the audience.

The conference was divided into four toplcs of exchange informa-
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tion; viz., simulation combination and characteristics, parametric

identification and measurement technique, aerodynamic elastic on-board .
vibration and 1ts effect; and rotor dynamics, vibration reduction and &5
isolation, ete. After the exchange, all the representatives believed ;a
that vibration theory has accomplished some results in the application T
to englineering problems 1in our country during recent years. By absorb- e
ing new theories, new technologles and new results, this science bhas ;?
been developed and experimental techniques and measuring equipment have f&
been improved significantly. In the conference the 22nd Meeting of 27

Structural Mechanics and Materials in the US was introduced. Further-
more, the 9th International and 1st and 2nd National Non-linear
Vibration Meetings were also introduced. Hence, the status of vibra-
tional study in and out of the country was further discussed.
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ri After exchanging ideas, the direction of future research was

E! explored. It was proposed that the trend of development should be care-
) fully noticed. The studies on flow-solid interaction, active control
technology and time-space method in conjunction with theoretical

N study, engineering applications and experimental techniques should be

Il further strengthened concurrently.
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During the conference, the China Aeronautical and Astronautical
Society and the China Mechanical Society held meetings to discuss the
;‘ formation of vibration special groups and the content of future aca-
demic activities, respectively.
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- The next national vibration theory will also be held jointly by
l‘ the two societies, tentatively in 1984. '
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